

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ ПО МОДУЛЮ МОДУЛЬ З АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ СИСТЕМАМИ ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЙ

Направление подготовки	13.04.02 Электроэнергетика и электро- техника
Направленность (профиль)	Управление и устойчивое развитие элек- трохозяйства предприятия
Уровень высшего образования	магистратура
	(бакалавриат, специалитет, магистратура)
Квалификация выпускника	магистр

Автор - разработчик: канд. техн. наук Жаткин А.Н. Рассмотрено на заседании кафедры Энергетики Одобрено Методическим советом университета 30 июня 2021 г., протокол № 4

Методические рекомендации для магистрантов по выполнению курсового проекта составлены в соответствии с рабочей программой модуля «Модуль 3 Автоматизация управления системами электроснабжения предприятий».

Курсовой проект по модулю Модуль 3 Автоматизация управления системами электроснабжения предприятий предусмотрен в 3 семестре. Он является составной частью самостоятельной работы магистрантов.

Курсовое проектирование имеет целью закрепление магистрантами полученных на лекциях теоретических знаний и практического опыта, приобретенного на практических занятиях, путем самостоятельной работы под руководством преподавателя.

1. Тебования к содержанию и оформлению пояснительной записки к курсового проекта

В пояснительной записке объемом 20-30 страниц текста, включая необходимые иллюстрирующие материалы (чертежи, схемы, графики, рисунки) излагается идеи и существо работы, приводятся результаты теоретических расчетов, приводят выводы.

При написании записки студент обязан дават сылки на автора и источники, откуда он заимствует материал или отдельные результаты. В тексте пояснительной записки недопустимыми являются орфографические и синтаксические ошибки и описки, небрежное оформление рисунков, таблиц, схем.

Пояснительная записка курсового проекта должна содержать следующие структурные части:

- Титульный лист;
- Задание;
- Содержание;
- Обозначения и сокращения;
- Введение;
- Основная часть;
- Заключение;
- Список использованных источников;
- Приложения.

2. Содержание пояснительной записки

Структурные части пояснительной записки начинают с нового листа, заголовки не нумеруют и размещают по центру строки. Исключение — заголовки основной части и приложения. Заголовки основной части начинают с абзацного отступа. Пояснительная записка переплетается либо вставляется в стандартные папки для дипломных работ. Пояснительная записка подписывается студентом на титульном листе с указанием даты окончания работы.

2.1. Титульный лист

Титульный лист является началом пояснительной записки. Пример оформления титульных листов приведены в приложении №1. На титульном листе указываются: полное наименование учебного заведения, структурного подразделения, оценка работы, тема работы, инициалы и фамилия студента и руководителя, город и год выполнения. На титульном листе должны быть подписи всех вышеуказанных лиц с указанием даты.

2.2. Задание

Задание на курсовой проект составляется по установленной форме, руководителем работы и студентом и помещается на странице, следующей за титульным листом. Задание не нумеруется.

2.3. Содержание

Содержание должно включать: введение, наименование всех разделов, подразделов, пунктов, заключение, список использованных источников и наименование приложений с указанием номеров страниц (ГОСТ 7.32-2017), с которых начинаются эти элементы.

2.4. Обозначения и сокращения

Раздел должен содержать перечень обозначений и сокращений, применяемых в пояснительной записке. Запись обозначений и сокращений проводят в порядке приведения их в тексте записки с необходимой расшифровкой и пояснениями. Допускаются определения, обозначения и сокращения приводить в одном структурном элементе «Определения, обозначения и сокращения».

2.5. Введение

Введение к пояснительной записке должно содержать актуальность выполняемого проекта.

2.6. Основная часть

Основной текст пояснительной записки, определяющий ее содержание, должен излагаться в строгой логической последовательности. Независимо от разнообразия задач и методов их решения основная часть пояснительной записки должна содержать следующие разделы, представляющие задания по темам Модуля:

- Моделирование систем электроснабжения
- Smart Grid предприятия
- Учет и качество электрической энергии

2.7. Заключение

В разделе должны отражаться основные результаты проделанной работы, оценка полноты решений поставленных задач, рекомендации по практическому использованию полученных результатов. Объем заключения должен составлять не более 1 страницы.

2.8. Список использованных источников

В списке указываются все источники, использованные в процессе работы. На них должны иметься соответствующие ссылки в тексте пояснительной записки. Источники следует располагать в порядке появления ссылок в тексте записки, нумеровать арабскими цифрами без точки. Сведения об источниках, включенных в список, необходимо давать в соответствии с требованиями ГОСТ 7.1-2003 и ГОСТ Р 7.0.9-2009.

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

Задание на курсовой проект

студента	BICITIA CHETCHIAN	ии электроспаожения і	<u>тредприятии</u>
направление подготовки			
1.Темы курсового проекта:			
Моделирование системы	электросцабуен	ия полетаннии собств	енни у нумел РV 6кВ (ПС
СН РУ6кВ) котельной энергоцез	-		`
тромедь».	ха (Эц) филиала	производство полим	ramos no «y panonek-
 Качество электрической з 	NIIANTIIII D NIIAVTI	мулэдйстве полстании	w coectbellilly hywn ro-
тельной энергоцеха филиала «П			
• Smart Grid предприятия	роизводство пол	имстаннов// 110 «Урал	ізлектромедь»,
2.Содержание (индивидуальное	запание) купсов	ого проекта в том нис	пе состав графицеских
работ и расчетов	задание) курсов	oro npockia, b rom and	ле состав графических
работ и расчетов			
3. Структура работы:			
Моделирование систем электрос	снабжения		
Учет и качество электрической з			
Smart Grid предприятия	энергии		
этагс она предприятия			
4. График работы			
Наименование элементов	C	п	Отметка о выполне-
проектной работы	Сроки	Примечания	нии
Моделирование систем элек-			
троснабжения			
-			
Smart Grid предприятия			
Учет и качество электриче-			
ской энергии			
Рудсоволители		/И О фами	ma/

Введение

В ходе работы над курсовым проектом рассмотрены актуальные проблемы в системе электроснабжения филиала «Производство полиметаллов» АО «Уралэлектромедь». В качестве объекта исследования выбрана одна из наиболее ответственных подстанций энергоцеха.

Выполнена модель подстанции, определены недостатки схемы и разработаны мероприятия по оптимизации работы подстанции.

Так же проведена работа по определению качества электрической энергии в рамках подстанции, выявлены отклонения от нормативных показателей, предложены мероприятия по повышению качества электрической энергии.

По теме Smart Grid рассмотрены варианты, определены плюсы и минусы различных схем установки объекта малой генерации.

Основная часть

Моделирование систем электроснабжения

1. В качестве объекта моделирования выбрана подстанция собственных нужд РУ 6кВ (ПС СН РУ6кВ) котельной энергоцеха (ЭЦ) филиала Производство полиметаллов АО «Уралэлектромедь».

Сферами ответственности ЭЦ филиала являются:

- Распределение, учет, контроль потребления электроэнергии подразделениями филиала;
 - Выработка и транспортировка тепла в паре и горячей воде;
 - Снабжение подразделений филиала водой разной степени подготовки;
 - Снабжение подразделений филиала сжатым воздухом.

Одним из самых крупных потребителей электроэнергии в ЭЦ являются приводы насосного оборудования.

2. Центрами питания производственных мощностей промплощадки ф.ППМ являются:

1) ПС 110/6 кВ «Медь» имеет 2 основных ввода:

- ввод № 1 с подключением глухим отпаем к ВЛ-110 кВ «ВТГРЭС-Карпушиха»;
- ввод № 2 с подключением глухим отпаем к ВЛ-110 кВ «ВТГРЭС-НЦЗ».

Для обеспечения резервного электроснабжения электроприемников 1-й и 2-й категории секции шин РУ-6 кВ подстанции секционируются выключателем, оборудованным АВР. В нормальном состоянии секционный выключатель отключен.

При исчезновении напряжения 110 кВ (по обоим вводам 110 кВ) питание потребителей может осуществляться по КЛ-6 кВ ТП №3-1 (яч.3), ТП №3-2 (яч.2) через ТП №3 с ПС 110 кВ «Калата»

Схема ЗРУ высокого напряжения ΠC 110/6 кВ «Медь», применяемые коммутационные аппараты.

На подстанции установлено 2 головных силовых трансформатора:

- трансформатор № 1 ТДН-16000, 16000 кВА, 110/6 кВ;
- трансформатор № 2 ТДН-16000, 16000 кВА, 110/6 кВ.

Связь трансформаторов с РУ-6 кВ выполнена шинами

2) ПС 110/6 кВ «Калата» имеет 2 основных ввода:

- ввод № 1 с подключением глухим отпаем к ВЛ-110 кВ «ВТГРЭС-Карпушиха»;
- ввод № 2 с подключением глухим отпаем к ВЛ-110 кВ «ВТГРЭС-Таволги».

Для обеспечения резервного электроснабжения электроприемников 1-й и 2-й категории секции шин РУ-6 кВ подстанции секционируются выключателем. В нормальном состоянии секционный выключатель отключен.

При исчезновении напряжения 110 кВ питание потребителей может осуществляться через ПС 110 кВ «Медь».

Схема ЗРУ высокого напряжения ПС 110/6 кВ «Калата», применяемые коммутационные аппараты

На подстанции установлено 2 головных силовых трансформатора:

- трансформатор № 1 ТДН-16000, 16000 кВА, 110/6 кВ;
- трансформатор № 2 ТДН-16000, 16000 кВА, 110/6 кВ.

Кабельные линии 6 кВ от трансформаторов проложены в кабельных каналах длиной 150 метров на 4 секции шин ЦРУ-6 кВ.

- 3. Моделируемая ПС СН собственных нужд запитана по двум вводам с двух систем шин ЦРУ РУ 6кВ, которые, в сою очередь запитаны с головных трансформаторов ПС «Калата» (Рисунок 1).
 - 4. Был проведен расчет начальных условий (Рисунок 2.) Нагрузка на трансформаторы составила:
 - трансформатор № 1 ТДН-16000, 16000 кВА, 110/6 кВ 6,5%;
 - трансформатор № 2 ТДН-16000, 16000 кВА, 110/6 кВ 6,3%.

Нагрузка на лини от Пс «Калата» До ПС СН составила:

- Линия 1 26%;
- Линия 2 25.1%.

Трансформаторы являются взаимозаменяемыми. При отключении трансформатора №1, секционный выключатель в ЦРУ переводится в положение «вкл» (Рисунок 3) при этом:

Нагрузка на трансформаторы составила:

- трансформатор № 1 ТДН-16000, 16000 кВА, 110/6 кВ 0%;
- трансформатор № 2 ТДН-16000, 16000 кВА, 110/6 кВ 12,8%.

Нагрузка на лини от Пс «Калата» До ПС СН составила:

- Линия 1 26%;
- Линия 2 25,1%.
- 5. Расчет токов короткого замыкания

Проведен растет токов КЗ системы (Рисунок 4)

На основании расчетов настроена релейная защита. РЗ установлена в ячейках ПС ЦРУ. При возникновении КЗ на одной из шин происходит отключение масляных включателей впмп-10 (Рисунок 5).

- 6. Смоделирован запуск асинхронного двигателя 483кВт, 6кВ, построены графики. (Рисунок 6).
- 7. В качестве мероприятия по повышению надежности электроснабжения подстанции предлагаю установить ABP на секционных разъединителях в ПС ЦРУ и ПС СН.

Приложения

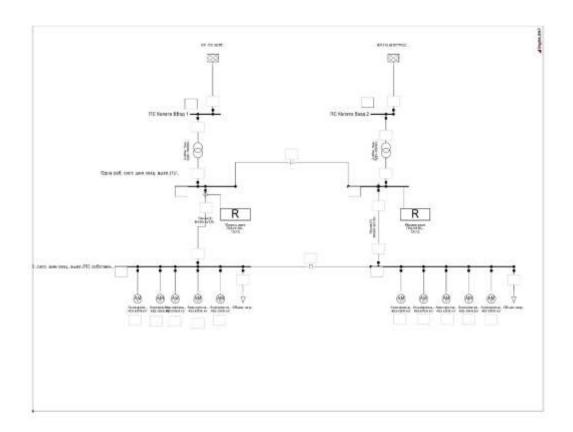


Рисунок 1 - Модель сети ПС «Калата» - ПС СН

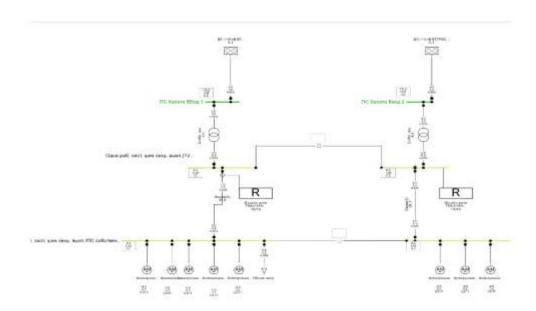


Рисунок 2 - Расчет начальных условий

Рисунок 3 - Расчет начальных условий при отключенном трансформаторе N = 1

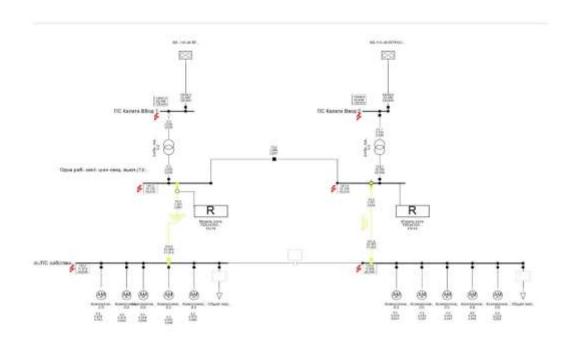


Рисунок 4 - Расчет токов КЗ

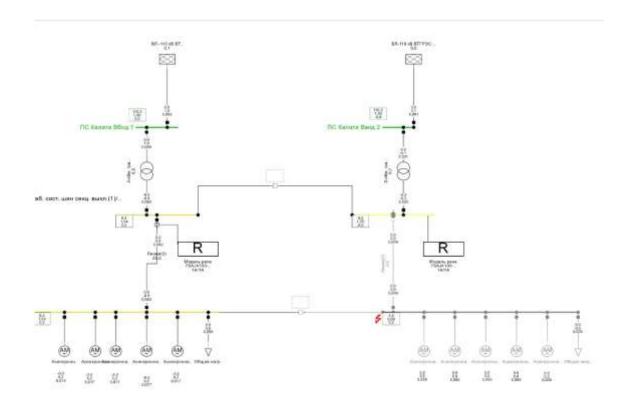


Рисунок 5 - Настройка РЗ

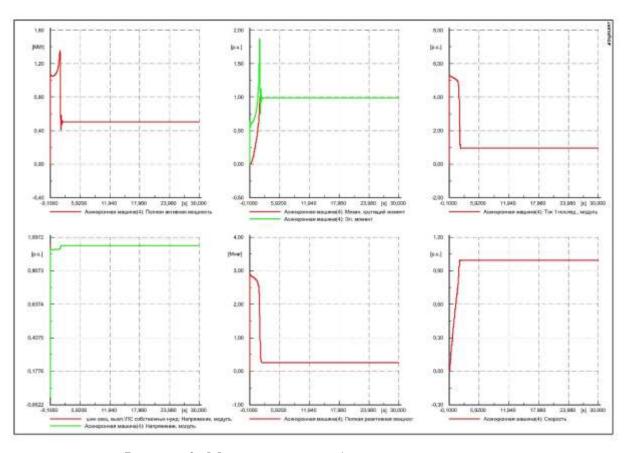


Рисунок 6 - Моделирование работы асинхронного двигателя

Учет и качество электрической энергии

1. Выбор объекта исследования

В качестве объекта изучения выбрана подстанция собственных нужд Ру-0,4 кВ энергоцеха филиала производство полиметаллов АО «Уралэлектромедь».

2. Обоснование целесообразности повышения качества электроэнергии

В сетях электроснабжения предприятия имеется большое количество нелинейных потребителей электроэнергии, что влияет на качество электроэнергии. Снижение качества электроэнергии приводит к потерям мощностей, приводит к повреждению электрооборудования, к сбоям систем защиты, снижению качества учёта электроэнергии, увеличению потребления электроэнергии. В конечном счете снижение качества электроэнергии приводит к дополнительным издержкам предприятия, что недопустимо в условиях конкуренции.

3. Краткое описание схемы электроснабжения

Подстанция собственных нужд РУ 0,4 кВ запитана от РУ 6кВ подстанции собственных нужд по двум вводам. На вводах установлены трансформаторы ТМ-1000кВА 6/0.4.

4. Перечень приемников электроэнергии подстанции

4. Hepe tend upneminkob	sick i positi	ергин подетанции
Линейные приемники эле	ектроэнер	гии, подключенные к подстанции:
Триемник	Мощ- ность (кВт)	Режим работы
Асинхронный двигатель сетевого насоса №1	200	продолжительный номинальный
Асинхронный двигатель сетевого насоса №2	200	продолжительный номинальный
Асинхронный двигатель пита- тельного насоса №6	75	продолжительный номинальный
Асинхронный двигатель метце-ховского насоса	55	продолжительный номинальный

Нелинейные приемники электроэнергии, подключенные к подстанции:									
Приемник	Мощ-	Режим работы	примечание						
	ность								
	(кВт)								
Асинхронный двигатель пита-	250	с непериодическими изме-	Работают пооче-						
тельного насоса №1 работа от		нениями нагрузки и ча-	редно						
ПЧ		стоты вращения							
Асинхронный двигатель пита-	250								
тельного насоса №3 работа от									
ПЧ									
Асинхронный двигатель пита-	250								
тельного насоса №4 работа от									
ПЧ									
Асинхронный двигатель дымо-	75		Работают пооче-						
соса котла №5			редно						
Асинхронный двигатель венти-	160								
лятора котла №5									

Асинхронный двигатель дымо- соса котла №6	75		
Асинхронный двигатель вентилятора котла №6	160		
Асинхронный двигатель дымо- соса котла №7	75		
Асинхронный двигатель венти- лятора котла №7	160		
Сварочный аппарат котла №1	52	Повторно-кратковремен- ный режим	
Сварочный аппарат деаэраторов	52		

5. Выбор методики проведения измерений

Методика выполнения измерений соответствует ГОСТ 30804.4.4.30, ГОСТ 30804.4.7. Проверка качества электроэнергии проводилась по следующим критериям:

- Медленные изменения напряжения;
- Отклонение частоты;
- Колебания напряжения и фликер;
- Несинусоидальность напряжения;
- Несимметрия напряжения.

6. Выбор приборов для измерения

Для измерений был применен имеющиеся в распоряжении приборы Ресурс-UF2M, Ресурс-ПКЭ 1.7.

Измерения проводились на ячейке №12 ABP ВВОД 1.

7. Результаты измерений

Результаты измерений отклонений напряжения

В процентах

Обозначение пкэ	Результат измерений	Нормативное значение								
Напряжение фазное А										
δU ₍₋₎ 0,0 10,0										
$\delta U_{(+)}$	14,9	10,0								
Напряжение фазное В										
δU ₍₋₎	0,0	10,0								
δU ₍₊₎	14,5	10,0								
	Напряжение фазное С									
δU ₍₋₎ 0,0 10,0										
$\delta U_{(+)}$	14,4	10,0								

Результаты измерений отклонения частоты

Обозначение ПКЭ	Результат измерений, Гц	Нормативное значение, Гц
Δfн (95 %)	-0,02	-0,20
Δf в (95 %)	0,02	0,20
Δf HM (100 %)	-0,04	-0,40
Δf нб (100%)	0,03	0,40

Результаты измерений коэффициента несимметрии напряжений по обратной последовательности

В процентах

		Нормативное значе-
Обозначение ПКЭ	Результат измерений	ние
K _{2U} (95%)	0,29	2,00
K _{2U} (100%)	0,30	4,00

Результаты измерений коэффициента несимметрии напряжений по нулевой последовательности

В процентах

Обозначение ПКЭ	Результат измерений	Нормативное значе-
		ние
K_{0U} (95%)	0,19	2,00
K_{0U} (100%)	0,28	4,00

Результаты измерении кратковременной дозы фликера											
Обозна-	Напряжение А		Напряжени	e B	Напря	Норма-					
чение	Резуль-	T ₂ , %	Результат	T_2 ,	Результат	T ₂ , %	тивное				
ПКЭ	тат изме-		измерений	%	измерений		значе-				
	рений						ние				
Pst	0,54	0,0	0,46 0,0		0,58	0,00	1,38				
Результаты	измерений	длительн	ой дозы флик	ера							
Обозна-	Напряже	ение A	Напряжени	e B	Напря	Норма-					
чение	Резуль-	T_2 , %	Результат	T_2 ,	Результат	T ₂ , %	тивное				
ПКЭ	тат изме-		измерений	%	измерений		значе-				
	рений						ние				
P_{lt}	0,39	0,00	0,28	0,0	0,35	0,00	1,00				

Результаты измерений суммарного коэффициента гармонических составляющих напряжения

В процентах

Обозна-	Напряжение А			Напряжени	ie В		Напряжение	Норма-		
ПКЭ										значе-
										ние
(95%)	Результат измере- ний	T_1	T_2	Результат измере- ний	T_1	T_2	Результат измерений	T_1	T_2	
K_U (100%)	3,30	0,0		3,12	0,0		3,02	0, 0		8,00
	3,41		0,0	3,22		0,0	3,09		0,0	12,00

Результаты измерений коэффициентов гармонических составляющих напряжения порядка nВ процентах

П		Результат измерений												тивное
]	Напряже	ени А	1	Напряжение В			Напряжение С				значение		
	КU	Ки(п)	T_1	T_2	KU	Ku(n)	T_1	T_2	KU	Ku(n)	T_1	T_2	KU(n)	Ku(n)
	(Π)	(100			(n)	(100			(n)	(100			(95%)	(100 %)
	(95%)	%)			(95%)	%)			(95%)	%)				
2	0,12	0,14	0,	0,0	0,11	0,13	0,0	0,0	0,11	0,13	0,0	0,0	2,00	3,00
3	1,44	1,44	0,	0,0	1,47	1,50	0,0	0,0	1,56	1,59	0,0	0,0	5,00	7,50

4	0,09	0,09	0,	0,0 0,10	0,12	0,0 0,0	0,09	0,10	0,0	0,0	1,00	1,50
5	2,12	2,29	0,	0,0 0,10	2,12	0,0 0,0	1,73	1,92	0,0	0,0	6,00	9,00
6	0,07	0,07	0,	0,0 0,07	0,07	0,0 0,0	0,08	0,09	0,0	0,0	0,50	0,75
7	1,74	1,78	0,	0,0 1,62	1,67	0,0 0,0	1,59	1,60	0,0	0,0	5,00	7,50
8	0,14	0,15	0,	0,0 1,02	0,13	0,0 0,0	0,12	0,13	0,0	0,0	0,50	0,75
9	0,33	0,34	0,	0,0 0,37	0,37	0,0 0,0	0,42	0,43	0,0	0,0	1,50	2,25
		0,08	^								· ·	
10	0,07	,	0,	0,0 0,07	0,08	0,0 0,0	0,08	0,09	0,0	0,0	0,50	0,75
11	0,64	0,74	0,	0,0 0,70	0,82	0,0 0,0	0,70	0,82	0,0	0,0	3,50	5,25
12	0,07	0,08	0,	0,0 0,05	0,06	0,0 0,0	0,07	0,08	0,0	0,0	0,20	0,30
13	0,51	0,53	0,	0,0 0,34	0,38	0,0 0,0	0,56	0,57	0,0	0,0	3,00	4,50
14	0,08	0,08	0,	0,0 0,06	0,06	0,0 0,0	0,07	0,08	0,0	0,0	0,20	0,30
15	0,22	0,23	0,	0,0 0,26	0,26	0,0 0,0	0,25	0,26	0,0	0,0	0,30	0,45
16	0,06	0,07	0,	0,0 0,05	0,06	0,0 0,0	0,05	0,06	0,0	0,0	0,20	0,30
17	0,44	0,46	0,	0,0 0,42	0,44	0,0 0,0	0,38	0,40	0,0	0,0	2,00	3,00
18	0,08	0,08	0,	0,0 0,07	0,08	0,0 0,0	0,08	0,08	0,0	0,0	0,20	0,30
19	0,24	0,26	0,	0,0 0,22	0,27	0,0 0,0	0,29	0,33	0,0	0,0	1,50	2,25
20	0,07	0,08	0,	0,0 0,06	0,06	0,0 0,0	0,06	0,06	0,0	0,0	0,20	0,30
21	0,11	0,12	0,	0,0 0,13	0,13	0,0 0,0	0,11	0,11	0,0	0,0	0,20	0,30
22	0,07	0,07	0,	0,0 0,05	0,05	0,0 0,0	0,05	0,06	0,0	0,0	0,20	0,30
23	0,46	0,50	0,	0,0 0,41	0,45	0,0 0,0	0,33	0,38	0,0	0,0	1,50	2,25
24	0,09	0,09	0,	0,0 0,08	0,08	0,0 0,0	0,08	0,08	0,0	0,0	0,20	0,30
25	0,27	0,30	0,	0,0 0,40	0,41	0,0 0,0	0,33	0,34	0,0	0,0	1,50	2,25
26	0,06	0,06	0,	0,0 0,06	0,06	0,0 0,0	0,06	0,06	0,0	0,0	0,20	0,30
27	0,08	0,09	0,	0,0 0,07	0,08	0,0 0,0	0,04	0,04	0,0	0,0	0,20	0,30
28	0,07	0,07	0,	0,0 0,05	0,06	0,0 0,0	0,06	0,07	0,0	0,0	0,20	0,30
29	0,44	0,48	0,	0,0 0,34	0,37	0,0 0,0	0,30	0,32	0,0	0,0	1,50	2,25
30	0,08	0,08	0,	0,0 0,07	0,08	0,0 0,0	0,07	0,08	0,0	0,0	0,20	0,30
31	0,33	0,38	0,	0,0 0,31	0,36	0,0 0,0	0,29	0,33	0,0	0,0	1,50	2,25
32	0,06	0,06	0,	0,0 0,06	0,06	0,0 0,0	0,05	0,05	0,0	0,0	0,20	0,30
	0,06	0,07	0,	0,0 0,05	0,05	0,0 0,0	0,04	0,05	0,0	0,0	0,20	0,30
34	0,05	0,06	0,	0,0 0,05	0,05	0,0 0,0	0,05	0,06	0,0	0,0	0,20	0,30
	0,34	0,35	0,	0,0 0,29	0,29	0,0 0,0	0,26	0,28	0,0	0,0	1,50	2,25
36	0,07	0,08	0,	0,0 0,07	0,07	0,0 0,0	0,06	0,06	0,0	0,0	0,20	0,30
37	0,32	0,34	0,	0,0 0,28	0,29	0,0 0,0	0,23	0,25	0,0	0,0	1,50	2,25
	0,05	0,06	0,	0,0 0,05	0,06	0,0 0,0	0,04	0,04	0,0	0,0	0,20	0,30
39	0,05	0,06	0,	0,0 0,07	0,07	0,0 0,0	0,06	0,06	0,0	0,0	0,20	0,30
40	0,05	0,05	0,	0,0 0,04	0,05	0,0 0,0	0,04	0,04	0,0	0,0	0.20	0.30

8. Анализ результатов и выводы В результате испытаний электрической энергии на соответствие требованиям ГОСТ 32144-2013, получили результаты, приведенные в таблице:

Критерий качества	Соответствует / не соответствует ГОСТ 32144-2013
Медленные изменения напряжения	не соответствуют
отклонения частоты	соответствуют
суммарного коэффициента гармонических	соответствуют
составляющих напряжения	

коэффициента несимметрии напряжений по обратной последовательности	соответствуют
коэффициента несимметрии напряжений по нулевой последовательности	соответствую
кратковременной дозы фликера	соответствую
длительной дозы фликера	соответствуют

В пункте контроля ЭНЕРГОЦЕХ, РУ-0,4 кВ, яч 12. АВР ВВОД 1 из графика отклонений междуфазных и фазных напряжений, усреднённых в интервале времени 10 мин, видно, что напряжение находится выше номинального значения за все время испытаний превышая предельно допустимое значения.

Необходимо снизить напряжение до номинального значения, путем регулирования ступеней силового трансформатора.

Smart Grid предприятия.

Введение

Учитывая представленный тренд развития энергетики и риски параллельной работы остро востребованными являются технологии и технические решения безопасной и экономически эффективной интеграции множества малых источников и автономных систем энергоснабжения в существующие электросети. Технологию интеграции объектов с малой генерацией в электрические сети можно представить, как совокупность технических решений, обеспечивающих совмещение без дополнительных технических силовых устройств.

ОБЗОР ТЕХНИЧЕСКИХ РЕШЕНИЙ, ОБЕСПЕЧИВАЮЩИХ НАДЕЖНОСТЬ ЭНЕРГОСНАБЖЕНИЯ В АСЭ И БЕЗОПАСНЫЙ РЕЖИМ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ОБЪЕДИНЯЕМЫХ СИСТЕМ

Техническое реше-	Описание	Достоинства	Недостатки	
ние				
Работа автономной	Источниками явля-	Независимость	• Высокие затраты	
системы энергоснаб-	ются энергоблоки с		на надежность.	
жения (АСЭ) на базе	синхронными генера-		• Необходимость	
синхронной малой	торами. По критерию		регулирования ре-	
генерации (СМГ) в	надежности n-1 необ-		жима и противоава-	
островном режиме	ходим дополнитель-		рийного управле-	
	ный генератор, а с		ния в полном объ-	
	учетом ремонтных ра-		еме.	
	бот 2 генератора. Для		• Низкое использо-	
	запуска станции с		вание установлен-	
	нуля необходим ре-		ных мощностей	
	зервный дизель гене-			
	ратор			
Работа АСЭ на базе	Для выравнивания	• Независимость.	□ □Высокие за-	
СМГ с накопителем	графика нагрузки, ре-	•Кратковремен-	траты на батарею и	
и преобразователем	гулирования напряже-	ное резервирова-	преобразователь.	
	ния, кратковремен-	ние от батареи.	• Необходимость	
	ного резервирования	• Возможность	регулирования ре-	
	используется накопи-	использования	жима в полном объ-	
	тель энергии (аккуму-	генератора на по-	еме.	
	ляторная батарея) с	стоянных магни-	• Искажение	
	преобразователем.	тах и асинхрон-	формы синусоиды	
		ного генератора.	(появление высших	

Работа АСЭ на базе	Парадион мад работа	• Возможность высокого использования мощности генераторов.	гармоник в собственной сети). • Дополнительные потери при накоплении и преобразовании энергии.
СМГ в островном режиме с автоматическим вводом резерва от сети при погашении станции	Параллельная работа электростанции с внешней сетью не предусматривается. Надежность электроснабжения потребителей обеспечивается ABP от внешней сети	надежность при наличии сетевого резерва в требуемом объеме.	регулирования режима и противоаварийного управления в полном объеме. • Низкое использование установленных мощностей.
Присоединение к электрической сети АСЭ с асинхронным генератором	Использование асин- хронных генераторов в энергоблоках стан- ции.	Возможность выдачи избытков мощности и энергии в сеть.	• Надежность и качество ЭЭ определяются внешней сетью • Подпитка коротких замыканий токами от внешней сети • Невозможность автономной работы при нарушениях во внешней сети или связи с ней.
Присоединение к электрической сети АСЭ с асинхронным генератором и накопителем энергии	Использование асинхронных генераторов в энергоблоках станции в сочетании с накопителями и преобразователями.	Обеспеченная надежность электроснабжения потребителей. • Возможность высокого использования мощности генераторов. • Меньшая по отношению к 2 потребнос	□□Высокие затраты на батарею и преобразователь. □ Искажение формы синусоиды, в т.ч. появление гармоник во внешней сети. □ Подпитка коротких замыканий токами от внешней сети. □ Дополнительные потери при накоплении и преобразовании энергии.
Присоединение к электрической сети АСЭ на базе СМГ через вставку постоянного тока	Использование несин- хронной связи на базе вставки постоянного тока	• Обеспеченная надежность электроснабжения потребителей и работы электро-	□□Высокие затраты на преобразовательную вставку. □ Искажение формы синусоиды.

		T	
		станции. • Воз-	□ Дополнительные
		можность выдачи	потери мощности и
		избытков мощно-	энергии.
		сти и энергии в	
		сеть	
Присоединение к	Использование несин-	• Обеспеченная	
электрической сети	хронной связи на базе	надежность элек-	• Высокие за-
АСЭ на базе СМГ че-	асинхронизирован-	троснабжения по-	траты на
рез электромеханиче-	ного электромехани-	требителей и ра-	преобразователь-
скую вставку	ческого преобразова-	боты электро-	ную вставку.
	теля частоты.	станции.	
		• Возможность	• Дополнительные
		выдачи избытков	потери
		мощности и энер-	мощности и энер-
		гии в сеть	гии.
Присоединение к	Использование	0.5	тии.
Присоединение к электрической сети			□ □Рост отключае-
АСЭ на	традиционного комплекса автома-	надежность	мых токов КЗ в
базе СМГ с исполь-		электроснабже-	сети АСЭ и внеш-
	тики	RИН — о — о бууло той уу	
зованием	для обеспечения	потребителей и	ней сети. □ Возможность
обычной противоава-	безопасной и надеж-	работы	
рийной	ной	электростанции.	нарушения син-
автоматики	работы энергоузла с	• Возможность	хронности парал-
	электростанцией в	выдачи избытков	лельной работы.
	составе энергоси-	мощности и энер-	□ Возможность
	стемы.	гии в	возникновения не-
		сеть.	допустимых удар-
		• Повышение	ных моментов на
		качества ЭЭ в	валах СМГ с повре-
		районе	ждением энерго-
		присоединения	блоков.
		станции	• Взаимное влияние
		к сети за счет	АСЭ и внешней
		APB	сети на работу РЗА
		генератора.	и необходимость их
			согласования.
			• Дополнительные
			затраты на рекон-
			струкцию суще-
			ствующей автома-
			тики и дооснаще-
			ние дополнитель-
			ной.
			• Необходимость
			интеграции си-
			стемы управления
			АСЭ в систему
			ОДУ внешней сети.
			• Дополнительные
			затраты на оснаще-
			ние автоматикой
			управления режи-
			мом параллельной
			работы.

Присоединение к электрической сети АСЭ на базе СМГ с использованием автоматики опережающего сбалансированного деления сети и автооператора	Использование автоматики опережающего сбалансированного деления (АОСД) сети при нарушениях нормального режима и автооператора для автоматического восстановления нормального режима, и осуществления режимного управления	• Обеспеченная надежность электроснабжения потребителей и работы электростанции. • Возможность выдачи избытков мощности и энергии в сеть. • Повышение качества ЭЭ в районе присоединения станции к сети за счет APB генератора.	Дополнительные затраты на оснащение автоматикой АОСД.
Объединение АСЕ на базе СМГ в малые изолированно работающие энергосистемы (ИРЭС)	Создание изолированно работающих энергосистем на базе АСЭ.	 Обеспеченная надежность электроснабжения потребителей и работы электростанции. Возможность обмена избытками мощности и энергии в сети. Повышение качества ЭЭ за счет системного регулирования и выравнивания суммарного графика нагрузки. 	Дополнительные затраты на создание системообразующей сети, оснащение системной автоматикой на базе АОСД.

Выводы

Проведя анализ, положительных и отрицательных моментов каждого технического решения можно сделать вывод, что с точки зрения качества регулирования, обеспечения надежности, качества электроэнергии и использования установленной мощности наиболее предпочтительным является вариант с объединёнными автономными системами энергоснабжения.

Заключение

В ходе работы над курсовым проектом был получен опыт в моделировании систем электроснабжения и анализе системы на базе модели. Проведена работа по анализу качества электроэнергии сети и предложены мероприятия по повышению качества. Проведен начальный анализ Smart Grid решений по подключению к сетям и режимам регулирования собственной генерации.

Список использованной литературы

- 1. ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения;
- 2. ГОСТ 30804.4.4-2013 (IEC 61000-4-4:2004) Совместимость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам. Требования и методы испытаний;
- 3. ГОСТ 30804.4.7-2013 (IEC 61000-4-7:2009) Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств. Фишов А. Г., Марченко А. И., Ивкин Е. С., Семендяев Р. Ю. Автоматика опережающего деления в схемах присоединения малой генерации к электрической сети/ Релейная защита и автоматика энергосистем 2017: междунар. выст. и конф., Санкт-Петербург, 25– 28 апр. 2017 г.: сб. докл. Санкт-Петербург, 2017.

Приложение 2 к методическим рекомендациям для магистров по выполнению курсового проекта по модулю Модуль 3 Автоматизация управления системами электроснабжения предприятий

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

Задание на курсовую работу (проект)

по дисциплине				
студента	<u></u>	группы		
специальность/направление подготовки				
1.Тема курсовой	работы (проекта)			
2.Содержание (иг став графических работ и р	-		проекта), в том числе со-	
3. Структура раб	боты			
4. График работ	Ы			
Наименование эле- ментов проектной работы	Сроки	Примечания	Отметка о выполне- нии	

Руководитель _____

/И.О. Фамилия

Приложение 3 к методическим рекомендациям для магистров по выполнению курсового проекта по модулю Модуль 3 Автоматизация управления системами электроснабжения предприятий

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

Кафедра		*

КУРО	СОВАЯ РАБОТА (ПРОЕК	1)
по дисциплине «		»
Тема		
	Студент (ка)	
		ФИО
	Группа	-
	Руководитель	
	<u> </u>	ФИО
	ученая степе	нь, ученое звание
	оценка	подпись
	Дата сдачи	20 г.

г. Верхняя Пышма 20___Γ.

^{*}На титульном листе указывается название кафедры, за которой закреплен данный модуль.

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

РЕЦЕНЗИЯ

на курсовую работу (проект)

Студента (фамилия имя от	группы
(фамилия имя от Тема курсовой работы (проекта):	чество)
1. Соответствие результатов выполнени зультатам обучения по дисциплине	
	ь выполнения работы
	елов
ЛОВ	
5. Вопросы и замечания	
6. Общая оценка работы	
Сведения о рецензенте: Ф.И.О.	
Уч. звание	Уч. степень
Дата 20г.	И.О. Фамилия