

# Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»



## АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

### Интеллектуальные системы

Закреплена за кафедрой механики и автоматизации технологических процессов и производств

Учебный план 15.04.04-заочная АТПП гр. A-21163 ГОА.plx

15.04.04 Автоматизация технологических процессов и производств

Название магистерской программы: "Цифровизация и автоматизация технологических процессов металлургических и горнодобывающих предприятий"

Квалификация магистр

Форма обучения заочная

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля на курсах:

в том числе: экзамены 2

 аудиторные занятия
 16

 самостоятельная работа
 119

 часов на контроль
 9

#### Распределение часов дисциплины по курсам

| Курс         | 2   |     | Итого  |     |
|--------------|-----|-----|--------|-----|
| Вид занятий  | УП  | РΠ  | 711010 |     |
| Лекции       | 4   | 4   | 4      | 4   |
| Практические | 12  | 12  | 12     | 12  |
| Итого ауд.   | 16  | 16  | 16     | 16  |
| Контактная   | 16  | 16  | 16     | 16  |
| Сам. работа  | 119 | 119 | 119    | 119 |
| Часы на      | 9   | 9   | 9      | 9   |
| Итого        | 144 | 144 | 144    | 144 |

#### 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Целью изучения данной дисциплины является формирование знаний и умений по интеллектуальным системам.

#### 1.1 Задачи

- 1. Освоение основных принципов, лежащих в основе интеллектуальных систем;
- Приобретение практических навыков в использования основных типов информационных систем и прикладных программ общего назначения для решения с их помощью практических задач нечеткого управления;
- Формирование навыков формализованного описания интеллектуальных систем, построения нечетких моделей, интерпретации результатов решения.

#### 2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Цикл (раздел) ОП: Б1.О 2.1 | Требования к предварительной подготовке обучающегося: 2.1.1 2.1.2 Автоматические измерения и технологический контроль 2.1.3 Интерфейсы и протоколы полевых шин передачи данных программно-технических комплексов 2.1.4 Распределенные компьютерные информационно-управляющие системы 2.1.5 Теория автоматического управления 2.2 Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

- 2.2.1 Государственная итоговая аттестация
- 2.2.2 Защита выпускной квалификационной работы
- 2.2.3 Преддипломная практика

#### 3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

#### УК-1: Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

- ИУК-1.3: Формирует возможные варианты решения задач
- ИУК-1.2: Вырабатывает стратегию решения поставленной задачи
- ИУК-1.1: Анализирует проблемную ситуацию и осуществляет её декомпозицию на отдельные задачи

#### В результате освоения дисциплины (модуля) обучающийся должен

| 3.1   | Знать:                                                                                                                              |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| 3.1.1 | - теоретические основы моделирования как научного метода;                                                                           |
| 3.1.2 | - условия применения математических методов для формализации технологических процессов;                                             |
| 3.1.3 | - методы и алгоритмы решения задач нечеткого управления;                                                                            |
| 3.1.4 | - алгоритм решения задач нечеткого управления;                                                                                      |
| 3.1.5 | - основные типы функций принадлежности;                                                                                             |
| 3.1.6 | - алгоритм фаззификации переменных задач нечеткого управления и их дефаззификации;                                                  |
| 3.1.7 | - основы и алгоритмы профессиональной деятельности в рамках формализуемых процессов управления;                                     |
| 3.1.8 | - функционал стандартных пакетов прикладных программ, используемый для решения задач нечеткого управления;                          |
| 3.1.9 | - технологические приемы реализации решения в стандартных пакетах прикладных программ.                                              |
| 3.2   | Уметь:                                                                                                                              |
| 3.2.1 | <ul> <li>формализовать типовые модели управленческих и технологических процессов в виде задач нечеткого<br/>управления;</li> </ul>  |
| 3.2.2 | - выбирать метод решения задач нечеткого управления;                                                                                |
| 3.2.3 | - разрабатывать правила решения задач нечеткого управления в тезаурусе профессиональной деятельности;                               |
| 3.2.4 | - выбирать алгоритмы нечеткого управления из стандартных типовых в соответствии с решаемой задачей;                                 |
| 3.2.5 | - интерпретировать результаты решения задачи нечеткого управления в тезаурусе профессиональной сферы деятельности;                  |
| 3.2.6 | - применять пакеты прикладных программ и платформенных приложений для решения задач нечеткого управления FuzzyTech, Matlab          |
| 3.3   | Владеть:                                                                                                                            |
| 3.3.1 | - навыками осуществлять постановку нечеткой задачи управления и разрабатывать алгоритм ее решения;                                  |
| 3.3.2 | - навыками строить модель решения задачи нечеткого управления в профессиональной деятельности и обосновывать технологию ее решения; |

3.3.3 - навыками использовать стандартные пакеты прикладных программ для реализации задач нечеткого управления.

#### Разработчик программы:

канд. физ.-мат. наук, зав. кафедрой, Худяков П.Ю.

#### Рабочая программа дисциплины

#### Интеллектуальные системы

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 15.04.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ (уровень магистратуры) (приказ Минобрнауки России от 25.11.2020г. №1452)

составлена на основании учебного плана:

15.04.04 Автоматизация технологических процессов и производств

Название магистерской программы: "Цифровизация и автоматизация технологических процессов металлургических и горнодобывающих предприятий"

утвержденного учёным советом вуза от 24.02.2021 протокол № 2.

Рабочая программа одобрена на заседании кафедры

механики и автоматизации технологических процессов и производств

Протокол методического совета университета от 20.02.2021 г. № 1/1 Срок действия программы: 2021-2024 уч.г. Зав. кафедрой канд. физ.-мат. наук, Худяков П.Ю.