

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Цифровые системы управления

Закреплена за кафедрой механики и автоматизации технологических процессов и производств

Учебный план 15.04.04-заочная АТПП гр. A-21163 ГОА.plx

15.04.04 Автоматизация технологических процессов и производств

Название магистерской программы: "Цифровизация и автоматизация технологических процессов металлургических и горнодобывающих предприятий"

Квалификация магистр

Форма обучения заочная

Общая трудоемкость 5 ЗЕТ

Часов по учебному плану 180 Виды контроля на курсах:

в том числе: экзамены 1

 аудиторные занятия
 18

 самостоятельная работа
 153

 часов на контроль
 9

Распределение часов дисциплины по курсам

Курс	vpc 1		Итого		
Вид занятий	УП	РΠ	ИПОГО		
Лекции	4	4	4	4	
Практические	14	14	14	14	
Итого ауд.	18	18	18	18	
Контактная	18	18	18 18		
Сам. работа	153	153	153	153	
Часы на	9	9	9	9	
Итого	180	180	180	180	

Разработчик программы:

канд. физ.-мат. наук, зав. кафедрой, Худяков П.Ю.

Рабочая программа дисциплины

Цифровые системы управления

разработана в соответствии с ФГОС ВО:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 15.04.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ (уровень магистратуры) (приказ Минобрнауки России от 25.11.2020г. №1452)

составлена на основании учебного плана:

15.04.04 Автоматизация технологических процессов и производств

Название магистерской программы: "Цифровизация и автоматизация технологических процессов металлургических и горнодобывающих предприятий"

утвержденного учёным советом вуза от 24.02.2021 протокол № 2.

Рабочая программа одобрена на заседании кафедры

механики и автоматизации технологических процессов и производств

Протокол методического совета университета от 20.02.2021 г. № 1/1 Срок действия программы: 2021-2024 уч.г. Зав. кафедрой канд. физ.-мат. наук, Худяков П.Ю.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Целью изучения данной дисциплины является формирование у студентов знаний и умений в области анализа систем автоматизации и управления технологическими процессами.

1.1 Задачи

В результате изучения данной дисциплины студенты должны знать:

- 1. основы теории автоматического управления и регулирования;
- 2. принципы построения и алгоритмы функционирования цифровых систем автоматизации и управления;
- 3. принципы измерения технологической информации и преобразование этой информации в электрические сигналы;
- 4. цифровые технические средства автоматизации технологических процессов.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цикл (раздел) ОП:

Б1.В.ЛВ.04

- 2.1 Требования к предварительной подготовке обучающегося:
- 2.2 Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
- 2.2.1 Интегрированные системы проектирования и управления автоматизированных и автоматических производств
- 2.2.2 Системы управления производственными процессами
- 2.2.3 Государственная итоговая аттестация
- 2.2.4 Выполнение, подготовка к процедуре защиты выпускной квалификационной работы
- 2.2.5 Преддипломная практика
- 2.2.6 Защита выпускной квалификационной работы

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-1.1: Способен разрабатывать функциональную, логическую и техническую организацию автоматизированных и автоматических производств, их элементов, технического, алгоритмического и программного обеспечения на базе современных методов, средств и технологий проектирования

- ИПК-1.1.3: Владеет навыками создания баз данных, использования проблемно-ориентированных методов анализа, синтеза и оптимизации процессов автоматизации, навыками синтеза цифровых систем управления
- ИПК-1.1.2: Умеет разрабатывать приложения баз данных, выбирать рациональный вариант технического решения, разрабатывать и моделировать системы управления, производить необходимые расчеты
- ИПК-1.1.1: Знает содержание нормативно-проектной документации, ГОСТы, методы построения и управления базами данных при автоматизации технологических процессов

ПК-1.2: Способен обеспечивать надежность и безопасность на всех этапах жизненного цикла продукции, выбирать системы экологической безопасности производства

- ИПК-1.2.3: Владеет навыками создания баз данных, использования проблемно-ориентированных методов анализа, синтеза и оптимизации процессов автоматизации, навыками синтеза цифровых систем управления
- ИПК-1.2.2: Умеет осуществлять анализ работы систем контроля за экологической безопасностью производства, выбирать системы экологической безопасности производства
- ИПК-1.2.1: Знает правила эксплуатации систем управления, показатели безопасности технических систем, методы и средства обеспечения надежности и безопасности систем экологической безопасности производства

В результате освоения дисциплины (модуля) обучающийся должен

3.1 Знать:

- 3.1.1 математические основы анализа и синтеза систем управления;
- 3.1.2 состав аппаратных средств систем управления, методы реализации алгоритмов управления;
- 3.1.3 методы математического моделирования наиболее сложных в теоретическом плане нелинейных задач, средства экспериментального исследования проектных решений;
- 3.1.4 методики применения дискретных систем автоматического управления в задачах электрооборудования установок и технологических комплексов

3.2 Уметь:

- 3.2.1 анализировать особенности управляемого объекта составлять алгоритмы управления объектом;
- 3.2.2 формулировать математическое описание САУ и выбрать наиболее эффективные методы анализа САУ;
- 3.2.3 четко представлять набор сигналов управления и контроля объекта управления;
 - 3.2.4 выбирать состав аппаратной структуры компьютерной системы управления;
- 3.2.5 -разрабатывать и отлаживать программное обеспечение компьютерных САУ и электроавтоматики на языке управляющей ЭВМ.
- 3.2.6

3.3	Владеть:
3.3.1	- Разрабатывать алгоритмы функционирования систем автоматизации и управления;
3.3.2	- Создавать системы измерения технологической информации и преобразование этой информации в
	электрические сигналы;
222	Соотврать тахинирания арадатра артоматизации тахиодогиналину произсоор

ЭЛ	электрические сигналы;							
3.3.3 -	3.3.3 - Создавать технические средства автоматизации технологических процессов.							
	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литер атура	Ресу	Инте ракт.	Примечание
	Раздел 1. Основные понятия и			·				
1.1	определения автоматизации			TTETTS 1 1 1	П1.1		0	
1.1	Основные понятия и определения автоматизации /Лек/	l	1	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
1.2	Математические модели объектов и систем управления. /Пр/	1	2	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
1.3	Основные понятия и определения автоматизации /Cp/	1	24	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литер	Pecy	Инте	Примечание
занятия	занятия/ Раздел 2. Представление сигналов в цифровом виде и эффекты, возникающие при квантовании сигналов по уровню и времени	Курс		ции	атура	рсы	ракт.	
2.1	Представление сигналов в цифровом виде и эффекты, возникающие при квантовании сигналов по уровню и времени /Лек/	1	1	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
2.2	Расчет статических характеристик. /Пр/	1	2	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
2.3	Представление сигналов в цифровом виде и эффекты, возникающие при квантовании сигналов по уровню и времени /Ср/	1	25	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литер		Инте	Примечание
занятия	занятия/ Раздел 3. Описание цифровых систем управления. Устойчивость ЦСУ, компенсация полюсов и нулей, влияние недокомпенсации	Курс		ции	атура	рсы	ракт.	

3.1	Описание цифровых систем	1	0,5	ИПК-1.1.1	Л1.1		0	
	управления.			ИПК-1.1.2	Л1.2Л			
	Устойчивость ЦСУ, компенсация			ИПК-1.1.3	2.1			
	полюсов и нулей, влияние			ИПК-1.2.1	-			
	недокомпенсации			ИПК-1.2.2				
	/Лек/			ИПК-1.2.3				
					71.1			
3.2	Анализ линейных непрерывных систем		4	ИПК-1.1.1	Л1.1		0	
	управления: устойчивость, критерии			ИПК-1.1.2	Л1.2Л			
	устойчивости. /Пр/			ИПК-1.1.3	2.1			
				ИПК-1.2.1				
				ИПК-1.2.2				
				ИПК-1.2.3				
3.3	Описание цифровых систем	1	35	ИПК-1.1.1	Л1.1		0	
3.5	управления.	1		ИПК-1.1.2	Л1.2Л			
	Устойчивость ЦСУ, компенсация			ИПК-1.1.3	2.1			
				ИПК-1.1.3	2.1			
	полюсов и нулей, влияние							
	недокомпенсации			ИПК-1.2.2				
	/Cp/			ИПК-1.2.3				
Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литер	Pecy	Инте	Примечание
занятия	занятия/	Курс		ции	атура	рсы	ракт.	
	Раздел 4. Параметрически							
	оптимизируемые регуляторы ЦСУ.							
	Компенсационные							
	регуляторы.Апериодические							
	регуляторы	1						
4.1	Параметрически оптимизируемые	1	0,5	ИПК-1.1.1	Л1.1		0	
	регуляторы ЦСУ. Компенсационные		_	ИПК-1.1.2	Л1.2Л			
	регуляторы. Апериодические			ИПК-1.1.3	2.1			
	регуляторы /Лек/			ИПК-1.2.1				
	регузиторы үзгек			ИПК-1.2.2				
				ИПК-1.2.3				
1.2		1	2		П1 1		0	
4.2	Анализ линейных непрерывных систем	1	2	ИПК-1.1.1	Л1.1		0	
	управления: показатели качества			ИПК-1.1.2	Л1.2Л			
	управления. Инвариантность системы			ИПК-1.1.3	2.1			
	управления.			ИПК-1.2.1				
				ИПК-1.2.2				
	$/\Pi p/$			ИПК-1.2.3				
4.3	Параметрически оптимизируемые	1	19	ИПК-1.1.1	Л1.1		0	
	регуляторы ЦСУ. Компенсационные			ИПК-1.1.2	Л1.2Л			
	регуляторы. Апериодические			ИПК-1.1.3	2.1			
	регуляторы /Ср/			ИПК-1.2.1				
	регулиторы / Ср/			ИПК-1.2.2				
				ИПК-1.2.3				
TC	II	Carrage	TI		П	D	11	П
Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литер		Инте	Примечание
занятия	занятия/ Раздел 5. Результаты моделирования	Курс		ции	атура	рсы	ракт.	
	и внедрения на производстве ЦСУ							
5.1	Результаты моделирования и	1 1	0,5	ИПК-1.1.1	Л1.1		0	
J.1	внедрения на производстве ЦСУ /Лек/	1	0,5	ИПК-1.1.1	Л1.1			
	внедрения на производетве ЦС У /Лек/							
				ИПК-1.1.3	2.1			
				ИПК-1.2.1				
				ИПК-1.2.2				
				ИПК-1.2.3				
5.2	Цифровые системы управления. /Пр/	1	2	ИПК-1.1.1	Л1.1		0	
				ИПК-1.1.2	Л1.2Л			
				ИПК-1.1.3	2.1			
				ИПК-1.2.1				
				ИПК-1.2.2				
				ИПК-1.2.3				
5.3	Разупі таті і молонивороную ч	1	15	ИПК-1.2.3	Л1.1		0	
3.3	Результаты моделирования и	1	13		l .		0	
	внедрения на производстве ЦСУ /Ср/			ИПК-1.1.2	Л1.2Л			
	T .	1	I	ИПК-1.1.3	2.1	1	1	
				1 111112 1 2 1				
				ИПК-1.2.1				
				ИПК-1.2.2				

Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литер		Инте	Примечание
занятия	занятия/ Раздел 6. Метод пространства состояний и его использование в ЦСУ	Курс		ции	атура	рсы	ракт.	
6.1	Метод пространства состояний и его использование в ЦСУ /Лек/	1	0,5	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
6.2	Синтез линейных непрерывных систем управления. /Пр/	1	2	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	
6.3	Метод пространства состояний и его использование в ЦСУ /Ср/	1	35	ИПК-1.1.1 ИПК-1.1.2 ИПК-1.1.3 ИПК-1.2.1 ИПК-1.2.2 ИПК-1.2.3	Л1.1 Л1.2Л 2.1		0	

4.1 Образовательные технологии

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Перечень примерных вопросов для экзамена

- 1. Управление. Управление как информационный процесс. Объект, субъект, система управления. Цель управляемые переменные.
- 2. Основные принципы управления: принцип программного управления, принцип компенсации, принцип обратной связи, комбинированное управление.
- 3. Основные задачи систем управления. Классификация систем управления по различным признакам.
- 4. Оператор системы управления. Линейные и нелинейные модели. Линеаризация.
- 5. Стандартная и операторная форма уравнения звена системы управления. Собственный оператор системы и операторы воздействия. Принцип суперпозиции.
- 6. Преобразование Лапласа. Передаточные функции в операторной форме и в изображениях Лапласа.
- 7. Временные функции: переходная и импульсная переходная функции, связь между ними. Связь между передаточной и временными функциями.
- 8. Частотная передаточная функция. Амплитудно-фазовые частотные функции и характеристики.
- 9. Логарифмические частотные характеристики, их свойства.
- 10. Элементарные динамические звенья.
- 11. Структурная схема системы управления. Основные типы соединений, вычисление их передаточных функций. Вычисление передаточной функции замкнутой одноконтурной системы.
- 12. Граф системы управления. Построение графа системы управления по ее структурной схеме. Определитель графа. Формула Мейсона.
- 13. Определение асимптотической устойчивости системы управления. Асимптотическая устойчивость линейных стационарных систем управления.
- 14. Характеристическое уравнение системы управления. Основное условие устойчивости. Теоремы Ляпунова об устойчивости по линейному приближению.
- 15. Необходимое условие устойчивости. Алгебраические критерии устойчивости.
- 16. Частотные критерии устойчивости.
- 17. Устойчивость систем с чистым запаздыванием. Критическое запаздывание.
- 18. Робастная устойчивость системы управления. Полиномы Харитонова. Необходимое и достаточное условие робастной устойчивости.
- 19. Основная характеристика качества системы управления. Показатели качества и типовые воздействия.
- 20. Прямые показатели качества управления в переходном режиме.
- 21. Косвенные показатели качества управления в переходном режиме (корневые и частотные).
- 22. Показатели качества в установившемся режиме. Статические и астатические системы.
- 23. Инвариантность системы управления. Принцип двухканальности.
- 24. Управляемость системы. Матрица управляемости, критерий управляемости линейных стационарных систем.
- 25. Стабилизируемость линейных стационарных систем. Критерий стабилизируемости.
- 26. Наблюдаемость и восстанавливаемость управляемой системы. Критерий наблюдаемости линейных

стационарных систем. Принцип двойственности управляемости и наблюдаемости.

- 27. Типовые законы управления, устойчивость и качество управления при типовых законах.
- 28. Синтез систем управления максимальной степени устойчивости: постановка задачи, метод решения.
- 29. Синтез системы управления по желаемой передаточной функции.
- 30. Определение желаемой передаточной функции по заданным требованиям к качеству управления.
- 31. Метод обратной задачи динамики.
- 32. Синтез систем управления при наличии чистого запаздывания.
- 33. Общая постановка задачи оптимального управления. Классификация задач оптимального управления.
- 34. Метод множителей Лагранжа.
- 35. Принцип максимума Понтрягина.
- 36. Понятие о методах динамического программирования. Принцип оптимальности. Необходимое и достаточное условие оптимальности.
- 37. Особенности цифровых систем управления. Методы исследования цифровых систем.
- 38. Квантование непрерывных сигналов по времени и по уровню. Теорема Котельникова, эффект поглощения частот.
- 39. Цифровые законы управления.
- 40. Восстановление непрерывных сигналов.
- 41. Уравнения, передаточные и временные функции, частотные характеристики линейных дискретных систем.
- 42. Устойчивость линейных дискретных систем, алгебраические критерии устойчивости.
- 43. Частотные критерии устойчивости линейных дискретных систем.
- 44. Дискретизация непрерывных процессов.
- 45. Аналоговые модели дискретных сигналов.
- 46. Передаточные функции цифровых систем.
- 47. Устойчивость цифровых систем управления. Устойчивость одноконтурной цифровой системы.
- 48. Показатели качества цифровых систем управления.
- 49. Синтез дискретных систем управления: постановка задачи, типовые законы управления.
- 50. Синтез цифровых регуляторов: переоборудование непрерывных регуляторов.

5.2. Темы письменных работ

Примерный перечень тем домашних работ

- 1. Преобразование и обработка сигналов.
- 2. Цифровые сигналы и кодирование.
- 3. Преобразование данных и квантование.
- 4. Цифроаналоговое и аналого-цифровое преобразование.
- 5. Математическое описание процесса квантования. Восстановление сигналов по дискретным выборкам.
- 6. Теория Z-преобразования. Определение Z-преобразования. Вычисление Z-преобразований. Обратное Z-преобразование. Теоремы Z-преобразования. Импульсная передаточная функция.
- 7. Метод пространства состояний. Уравнения состояния и переходные уравнения состояния непрерывных систем.
- 8. Уравнения состояния цифровых систем с квантованием и фиксацией. Уравнения состояния цифровых систем, содержащих только цифровые элементы. Переходные уравнения состояния цифровых систем.
- 9. Цифровое моделирование и аппроксимация. Связь уравнения состояния с передаточной функцией. Диаграмма состояния. Декомпозиция цифровых систем. Диаграммы состояния импульсных систем управления
- 6.1.1. Примерные задания для проведения мини-контрольных в рамках учебных занятий
- 1. Понятие об управлении и объекте управления.
- 2. Функциональная схема системы автоматического управления. Назначение основных элементов схемы.
- 3. Классификация САУ по принципу действия.
- 4. Структурная схема САУ по отклонению.
- 5. Структурная схема САУ по возмущению.
- 6. Структурная схема САУ с комбинированным управлением.
- 7. Структурная схема адаптивной системы автоматического управления.
- 8. Классификация САУ по назначению.
- 9. Основные понятия и определения систем автоматического управления. Классификация САУ.
- 10. Основные способы формализованного описания динамических свойств элементов САУ.
- 11. Временные функции динамических звеньев САУ.
- 12. Переходные процессы в САУ и их характеристики.
- 13. Передаточная функция замкнутой САУ.
- 14. Понятие о статических и астатических САУ.
- 15. Частотные характеристики САУ.
- 16. Частотные характеристики апериодического звена.
- 17. Частотные характеристики интегрирующего звена.
- 18. Частотные характеристики колебательного звена.
- 19. Частотные характеристики дифференцирующего звена.
- 20. Методика построения асимптотической ЛАЧХ системы автоматического управления.
- 21. Передаточная функция замкнутой САУ при отрицательной жесткой обратной связи.
- 22. Передаточная функция замкнутой САУ при отрицательной гибкой обратной связи.
- 23. Апериодическое звено систем автоматического управления. Основные характеристики.

- 24. Электрические аналоги апериодического звена.
- 25. Интегрирующее звено систем автоматического управления. Основные характеристики.
- 26. Электрические аналоги интегрирующего звена.
- 27. Колебательное звено систем автоматического управления. Основные характеристики.
- 28. Электрические аналоги колебательного звена.
- 29. Дифференцирующее звено систем автоматического управления. Основные характеристики.
- 30. Электрические аналоги дифференцирующего звена.
- Понятие об устойчивости систем автоматического регулирования. Алгебраические критерии устойчивости. 31.
- Частотный критерий устойчивости систем автоматического регулирования Михайлова. 32.
- 33. Частотный и логарифмический критерии устойчивости Найквиста.
- 34. Последовательное соединение динамических звеньев САУ.
- 35. Параллельное соединение звеньев САР.
- 36. Показатели качества систем автоматического управления.
- 37. Частотные оценки показателей качества САУ.
- 38. Корневые оценки показателей качества САУ.
- 39 Понятие об установившемся процессе и точности САУ.
- 40 Ошибки статических САУ при типовых воздействиях.
- 41 Ошибки астатических САУ при типовых воздействиях.
- 42 Методы коррекции систем автоматического управления.
- 43. Последовательные корректирующие устройства.
- 44. Параллельные корректирующие устройства.

5.3. Фонд оценочных средств

Фонд оценочных средств предназначен для выявления уровня сформированности компетенций по дисциплине. Фонд оценочных средств, состоящий из материалов для текущего контроля и проведения промежуточной аттестации обучающихся, систему оценивания результатов промежуточной аттестации и критерии выставления оценок представлен в УМК дисциплины.

5.4. Перечень видов оценочных средств

Комплексные домашние задания, контрольные работы, тестирование.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература 6.1.1. Основная литература Авторы, составители Заглавие Издательство, год

Л1.1	Зубарев Ю. М., Косаревский С. В.	Автоматизация координатных измерений в машиностроении	Санкт-Петербург: Лань, 2017,https://e.lanbook.com/boo k/93000	
Л1.2	Лукинов А. П.	Проектирование мехатронных и робототехнических устройств	Санкт-Петербург: Лань, 2012,http://e.lanbook.com/boo ks/element.php? pl1_cid=25&pl1_id=2765	
6.1.2. Дополнительная литература				

	Авторы, составители	Заглавие	Издательство, год				
Л2.1	Пашков Е. В.,	Следящие приводы промышленного технологического	Санкт-Петербург: Лань,				
	Крамарь В. А.,	оборудования	2015,http://e.lanbook.com/boo				
	Кабанов А. А.		ks/element.php?pl1_id=61367				
(21 II							

6.3.1 Перечень программного обеспечения

6.3.1.1 MathLab 2017

6.3.1.2 Microsoft Office 2016 (Access, Excel, Word, OneNote, Outlook, PowerPoint, Publisher, Infopath)

6.3.2 Перечень информационных справочных систем

6.3.2.1 Консультант-плюс

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Ауд. №	Назначение	Оснащение
Лекционная аудитория (206 НИЦ, 220, 225, 226, 227, 228, 300, 301, 303, 317, 423,424)	Учебная аудитория для проведения занятий лекционного и семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	амфитеатром. Рабочее место преподавателя в составе стол, стул, тумба, трибунка, компьютер преподавателя, дополнительное устройство отображения: интерактивная доска с проектором или настенная ЖК-панель или маркерная доска с проектором и сенсорным датчиком. Проектор и моторизованный экран. Потолочные поворотные камеры.

Компьютерная аудитория (209 НИЦ, 210 НИЦ, 308 НИЦ, 324)	проектирования, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации с использованием учебных мест с компьютерами.	Учебные места с компьютерами. Рабочее место преподавателя в составе стол, стул, тумба, компьютер. Интерактивная доска с проектором. Потолочная поворотная камера. Документ-камера. Звуковая система. Компьютеры (моноблоки) с операционной системой Windows
412 8. METO	специалистов по автоматизации непрерывных технологических процессов и производств. Обучающиеся могут выполнить весь набор действий, которые входят в обязанность слесаря по ремонту и обслуживанию полевого уровня АСУ. Обучающиеся могут производить сборку электрических схем подключения датчиков и оборудования к контроллерам, выстраивать различные схемы сетевого обмена между оборудованием, строить модели реальных распределенных АСУТП предприятий. Осуществляется обучение со сложным технологическим процессом с помощью 3D и математических моделей трех технологических процессов непрерывных производств.	Рабочее место преподавателя в составе стол, стул, тумба, компьютер. Потолочная поворотная камера. Документ-камера. Звуковая система. 10 стендов с контроллерами АСУ таких производителей как: Siemens, Schneider Electric, DirectLOGIC, OBEH, Mitsubishi и т.д. Каждый стенд оборудован не только контроллерами, но и "мозгом" системы - управляющим компьютером (автоматизированным рабочим местом (АРМ)), панелью оператора и специализированным программным обеспечением. Верхний уровень АСУТП реализован при помощи SCADA-систем производителей контроллеров и сторонних разработчиков, возможно изучение принципов создания проектов для визуализации технологических процессов, архивирования данных и управления технологических процессов, архивирования данных и управления трех технологических процессов непрерывных производств. Лаборатория обладает программным обеспечением, которое является главным направлением развития систем автоматизации, а именно МЕЅсистемами. Оборудование объединено в единую систему таким образом, что имеется возможность построения сложной, комплексной системы управления производственными процессами с решением задач оптимизации загрузки оборудования и отдельных систем.

o. ... I rodii i lekiile v kasamur dun obe i modiinen no oebeliimo due

Методические указания для обучающихся по освоению дисциплины

- 1. Изучение рабочей программы дисциплины.
- 2. Посещение и конспектирование лекций.
- 3. Обязательная подготовка к практическим занятиям.
- 4. Изучение основной и дополнительной литературы, интернет-источников.
- 5. Выполнение всех видов самостоятельной работы.

Эффективное освоение дисциплины предполагает регулярное посещение всех видов аудиторных занятий, выполнение плана самостоятельной работы в полном объеме и прохождение аттестации в соответствии с календарным учебным графиком.

Студенту рекомендуется ознакомиться со списком основной и дополнительной литературы. Доступ к информационным ресурсам библиотеки и информационно-справочным системам сети "Интернет" организован в читальном зале библиотеки со стационарных ПЭВМ, либо с личного ПЭВМ (ноутбука, планшетного компьютера или иного мобильного устройства) посредством беспроводного доступа при активации индивидуальной учетной записи.

Пользование информационными ресурсами расширяет возможности освоения теоретического курса, выполнения самостоятельной работы.

Задания и методические указания к выполнению практических занятий составлены в соответствии с рабочей программой дисциплины и представлены в УМК дисциплины.

Практические занятия включают в себя освоение действий, обсуждение проблем по основным разделам курса и направлены на углубление изученного теоретического материала и на приобретение умений и навыков.

При подготовке к практическим занятиям используются методические указания, в которых описаны содержание и методы их проведения, условия выполнения, сформулированы вопросы к результатам выполнения заданий.

Методические рекомендации к организации и выполнению самостоятельной работы составлены в соответствии с рабочей программой дисциплины и представлены в УМК дисциплины.

Самостоятельная работа студентов включает освоение теоретического материала, подготовку к выполнению заданий

практических занятий, и подготовку к зачету.

Задания и методические указания к выполнению контрольных работ составлены в соответствии с рабочей программой дисциплины в УМК дисциплины.

Методические рекомендации по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья

При необходимости программа дисциплины может быть адаптирована для инклюзивного обучения инвалидов и лиц с ограниченными возможностями здоровья с учетом особенностей их психофизического развития, индивидуальных возможностей и необходимых специальных условий их обучения.

При наличии в группе студентов с ограниченными возможностями здоровья возможно использовать адаптивные технологии.

Для студентов с ограниченным слухом:

- использование разнообразных дидактических материалов (карточки, рисунки, письменное описание, схемы и т.п.) как помощь для понимания и решения поставленной задачи;
- использование видеоматериалов, которые дают возможность понять тему занятия и осуществить коммуникативные действия;
- выполнение проектных заданий по изучаемым темам.

Для студентов с ограниченным зрением:

- использование фильмов с возможностью восприятия на слух даваемой в них информации для последующего ее обсуждения;
- использование аудиоматериалов по изучаемым темам, имеющимся на кафедре;
- индивидуальное общение с преподавателем по изучаемому материалу;
- творческие задания по изучаемым темам или по личному желанию с учетом интересов обучаемого.