

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ ПО ДИСЦИПЛИНЕ

ГЕОМЕХАНИКА

Специальность	21.05.04 Горное дело
Направленность (профиль)	Подземная разработка рудных месторождений
Уровень высшего образования	Специалитет
-	(бакалавриат, специалитет, магистратура)

Автор - разработчик: Соколов В.В., канд. техн. наук, доцент, Колесатова О.С., ст. преподаватель

Рассмотрено на заседании кафедры разработки месторождений полезных ископаемых Одобрено Методическим советом университета 30 июня 2021 г., протокол № 4 Для решения задач студент принимает исходные данные, представленные в примерах задач, с учетом корректировки исходных данных, представленных в таблице 1.

Индивидуальные поправки определяются по начальным буквам фамилии, имени и отчества студента в соответствии с таблицей 2.

Таблица 1

Корректировка исходных данных заданий

Номер раздела	Номер задания	Корректировка в исходные данные заданий
1.2	1	$\sigma_1 = 547 - N1; \ \sigma_3 = 226 - N2; [M\Pi a]$
1.3	2	$H = 39 + N3$; [M]; $\varepsilon_x = 6 \cdot 10^{-3} - (0.01 \cdot N3) \cdot 10^{-3}$
1.4	3	$H = 790 - N2; r_0 = 2 + (0.01 \cdot N1); [M]$
1.5	4	H = 1200 - N3; [M]; $\varepsilon_x = 3,66 \cdot 10^{-4} + (0,01 \cdot N1) \cdot 10^{-4};$ $\varepsilon_y = 0,03 \cdot 10^{-4} + (0,01 \cdot N2) \cdot 10^{-4}$
1.6	5	$r_{0(1)} = 2 + (0.01 \cdot N1); \ r_{0(2)} = 2.8 + (0.01 \cdot N2);$ $l = 47 + (0.1 \cdot N3); \ [M]$
1.7	6	$H = 100 + N1; r_0 = 2.5 + (0.01 \cdot N3); [M]$
1.8	7	$H = 280 + N2; r_0 = 2.8 + (0.01 \cdot N1); [M]$
2.2	8	$H = 750 - N1; [M]; [\sigma_{CK}] = 51 + (0.1 \cdot N3);$ $[\sigma_1] = 106 + (0.1 \cdot N2); [MIIa]$
2.3	9	$e = 5 + (0.01 \cdot N1); [M]; [\sigma_p] = 260 + N2; [\frac{TC}{M^2}]$
3.1	10, a	$2e = 3.6 + (0.01 \cdot N3); [M]$
3.1	10, 6	$2e = 3.0 + (0.01 \cdot N1); [M]$
3.2	11	$H = 100 + N3; \ h = 3,0 + (0,01 \cdot N2); [M];$ $[\sigma]_{\partial ep} = 120 + (0,1 \cdot N1); [\frac{\kappa \Gamma c}{c M^2}]$
3.3	12	$H_c = 500 + N1; r_0 = 4.2 + (0.01 \cdot N3); [M]$
4.1	13	$H = 72 + N2; r_0 = 4.2 + (0.01 \cdot N1); [M]$
5.1	14	$a = 3.9 + (0.01 \cdot N1); [M]; [\sigma_{CK}] = 8860 - N3; [\frac{TC}{M^2}]$

Таблица 2 Индивидуальные поправки

Алфавит	Фамилия	Имя	Отчество	
Алфавит	N1	N2	N3	
Α	5	140	70	
Б	10	135	65	
В	15	130	60	
Γ	<u>20</u>	125	55	
Д	25	120	50	
E	30 .	115	<u>45</u>	
Ж	35	110	40	
3	40	105	35	
, И	45	100	30	
K	50	95	25	
Л	55	90	20	
M	60	85	15	
Н	65	80	10 5 140 135	
О	70	75		
П	75	<u>70</u>		
P	80	65		
С	85	60 '	130	
T	90	. 55	125	
У	95 .	50	120	
Φ	100	45	115	
X	105	40	110	
Ц	110	35	105	
Ч	115	30	100	
Ш	120	25	95	
Щ	125	20	90	
Э	130	15	85	
Ю	135	10	80	
Я	140	5	75	

Примечание, Индивидуальные поправки определяются по начальным буквам (инициалам) фамилии, имени, отчества. Например, Гущин Пётр Евгеньевич получает следующие поправки: N1=20, N2=70, N3=45.

Определение начального поля напряжений применительно к горизонтальной выработке

Определить компоненты начального поля напряжений в месте проведения будущей выработки и по поперечного сечения будущей выработки.

Исходные данные: H = 790м. ; $r_0 = 2$ м. ; породы – габбро-диабазы.

Для решения принимаем следующие характеристики породы:

$$\gamma = 2.76 \frac{\text{TC}}{\text{M}^3} = 2.76 * 10^{-2} \frac{\text{MH}}{\text{M}^3}$$
; $\nu = 0.4$.

Определяем компоненты начального поля напряжений (см. рис 1.2) по формулам;

$$\sigma_z^{(0)} = \gamma H = 0.0276 * 720 = 19.8 \,\mathrm{M}$$
 па $\sigma_z^{(0)} = \sigma_y^{(0)} = \frac{0.4}{1-0.4} * 19.8 = 13.2 \,\mathrm{M}$ па

Поскольку предполагается проведение выработки круглого сечения, то полученные выше напряжения представим в полярной системе координат (рис 1.2).

Имеем
$$\sigma_1^{(0)} = \sigma_z^{(0)}$$
 ; $\sigma_3^{(0)} = \sigma_x^{(0)} = \sigma_y^{(0)}$

Компоненты напряжений в полярной системе координат (τ, θ) определяем по следующим формулам:

$$\sigma_r = \frac{1}{2}(\sigma_1 + \sigma_3) + \frac{\sigma_1 + \sigma_3}{2}\cos 2\theta$$
 (1.39)

$$\sigma_{\theta} = \frac{1}{2}(\sigma_1 + \sigma_3) - \frac{\sigma_1 - \sigma_3}{2}\cos 2\theta \tag{1.40}$$

$$\tau_{r,\theta} = \frac{1}{2}(\sigma_1 - \sigma_3)\sin 2\theta \tag{1.41}$$

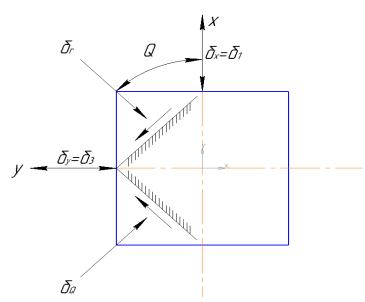
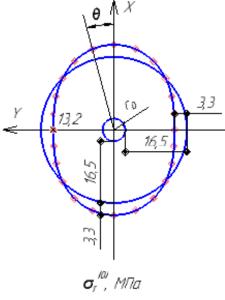


Рис. 1.2 Схема напряжений в декартовой и полярной системе координат

Подставив $\sigma_1^{(0)}$; $\sigma_3^{(0)}$ в формулы (1.4) – (1.6) получим:

$$\begin{pmatrix} \sigma_r^{(0)} \\ \sigma_\theta^{(0)} \end{pmatrix} = \frac{19.8 + 13.2}{2} + ; -\frac{19.8 - 13.2}{2} \cos 2\theta ;$$


$$\begin{split} \tau_{r\theta} &= -\frac{19,8-13,2}{2} \sin 2\,\theta \\ \sigma_r^{(0)} &= 16.5 + 3.3\cos 2\,\theta \text{ Мпа ;} \\ \sigma_\theta^{(0)} &= 16.5 - 3.3\cos 2\,\theta \text{ Мпа ;} \\ \tau_{r\theta}^{(0)} &= -3.3\sin 2\,\theta \text{ Мпа } \end{split}$$

Для построения эпюр компонентов начального поля напряжений по контуру сечения будущей выработки используем таблицу, значения в которой вычисляются по полученным выше формулам (табл. 1.1).

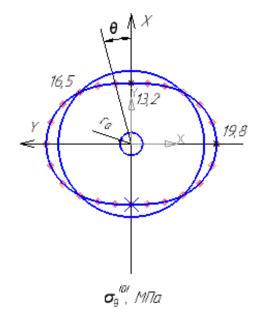
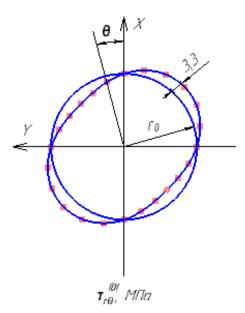

Эпюры компонентов начального поля напряжений по контуру сечения выработки показаны на рис. 1.8.

Таблица 1.1 – Значения начальных напряжений


Значения угла	Значения	Значения	Значения начальных
наклона главных	радиальных	нормальных	касательных
осей к осям x , y , θ	начальных	тангенциальных	напряжений $ au_{r heta}^{(0)},$
	напряжений $\sigma_r^{(0)}$,	напряжений $\sigma_{\theta}^{(0)}$,	МПа
	МПа	МПа	
0	19,80	13,20	0
15	19,35	13,64	-1,65
30	18,15	14,85	-2,86
45	16,50	16,50	-3,3
60	14,85	18,15	-2,86
75	13,64	19,35	-1,65
90	13,20	19,80	0
105	13,64	19,35	1,65
120	14,85	18,15	2,86
135	16,50	16,50	3,3
150	18,15	14,85	2,86
165	19,35	13,64	1,65
180	19,80	13,20	0
195	19,35	13,64	-1,65
210	18,15	14,85	-2,86
225	16,50	16,50	-3,3
240	14,85	18,15	-2,86
255	13,64	19,35	-1,65
270	13,20	19,80	0
285	13,64	19,35	1,65
300	14,85	18,15	2,86
315	16,50	16,50	3,3
330	18,15	14,85	2,86
345	19,35	13,64	1,65
360	19,80	13,20	0

радиальные напряжения

нармальные тангенциальные напряжения

касательные напряжения

Рис. 1.8. Эпюры начальных напряжений по контуру поперечного сечения будущей выработки круглого сечения.

Нагрузка на крепь горизонтальных выработок

А) Определить величину максимальной нагрузки на крепь горизонтальной выработки шириной 2в = 4,3 м, пройденной в песчаниках. Принять концепцию опускающегося столба породы.

Жестко-пластичная модель массива имеет две области:

- 1 участок, где деформации отсутствуют;
- 2 пластическая область (рис. 1).

Принимаются следующие характеристики пород:

$$\gamma = 2,69 \text{ Tc/m}^3$$
, $c = 0,2 \text{ Tc/m}^3$, $\nu = 0,28$, $\varphi = 45^\circ$.

Расчет отпора крепи, необходимого для удержания пород при принятии концепции опускающегося столба пород, осуществляется по формуле:

$$P = \frac{\gamma \cdot B - c}{\lambda \cdot t \, a \, \omega} \left[1 - exp \left(-\lambda \cdot \frac{H}{B} t g \, \varphi \right) \right],$$

где в - полупролет выработки; с - сцепление горных пород; H - глубина заложения выработки; λ - коэффициент бокового давления.



Рисунок 1 — Схема определения нагрузки на крепь в соответствии с моделью опускающегося столба: 1 — жесткая область; 2 — пластическая область

$$\begin{split} \frac{\partial P}{\partial H} &= \frac{\gamma_{\rm B} - c}{\lambda \cdot t g \varphi} - \frac{\gamma_{\rm B} - c}{\lambda \cdot t g \varphi} exp \left(-\lambda \cdot \frac{H}{{}_{\rm B}} t g \varphi \right) = \frac{\gamma_{\rm B} - c}{\lambda \cdot t g \varphi} exp \left(-\lambda \cdot \frac{H}{{}_{\rm B}} t g \varphi \right) = 0 \\ &\frac{\gamma_{\rm B} - c}{{}_{\rm B}} exp \left(-\lambda \cdot \frac{H}{{}_{\rm B}} t g \varphi \right) = 0 \end{split}$$

Коэффициент бокового давления вычисляется по формуле:

$$\lambda = \frac{v}{1 - v} = \frac{0.28}{1 - 0.28} = 0.39$$

Подставляем известные данные в формулу:

$$\frac{2,69 \cdot 2,15 - 0,2}{2,15} exp\left(-0,39 \cdot \frac{H}{2,15} \cdot 1\right) = 0$$

$$2,59 \cdot \exp(-0,181H) = 0 \Rightarrow \exp = 0.$$

Так глубина заложения выработки нам не известна, следовательно, $H \to \infty$, то величина $exp\left(-\lambda\cdot\frac{H}{B}tg\phi\right)$ тоже стремится в бесконечность, следовательно, максимальная нагрузка на крепь будет вычисляться по формуле:

$$P_{max} = \frac{\gamma \cdot \mathbf{B} - c}{\lambda \cdot tg\varphi}$$

$$P_{max} = \frac{2,69 \cdot 2,15 - 0,2}{0.39 \cdot 1} = 14,32 \text{ Tc/m}^2$$

Б) Определить нагрузку на крепь горизонтальной выработки прямоугольной формы шириной 2 = 3,1 м, пройденной по пласту суглинков, расположенному в известняках. Расчет производится по методу П.М. Цимбаревича.

Исходные данные: суглинок: $\gamma = 2.2 \, \text{тс/m}^3$, , $\varphi = 23^\circ$, $c = 3 \, \text{МПа}$, кажущийся угол внутреннего трения $\varphi^\kappa = 60^\circ$; Известняки: : $\gamma = 2.68 \, \text{тс/m}^3$, кажущийся угол внутреннего трения $\varphi^\kappa = 85^\circ$.

Половина пролета увеличенного свода определяется по формуле:

$$\mathbf{a}_1 = \mathbf{B} + h \cdot ctg\left(45^\circ + \frac{\varphi^{\kappa}}{2}\right),$$

где в — полупролет выработки в проходке; h - высота выработки в проходке, h = M; ϕ^{κ} — кажущийся угол внутреннего трения суглинков.

$$a_1 = 1,55 + 3 \cdot ctg\left(45^{\circ} + \frac{60^{\circ}}{2}\right) = 2,4 \text{ M}$$

Рисунок 2 – Расчетная схема

Высота свода находится по формуле:

$$B_1 = \frac{a_1}{f},$$

где f — коэффициент трения суглинков, определяется по формуле:

$$f = \frac{[\sigma_{\text{CK}}]}{100},$$

где

$$[\sigma_{\text{Cж}}] = rac{2 \operatorname{c} \cdot \operatorname{cos} \varphi}{1 - \operatorname{sin} \varphi}$$
 $[\sigma_{\text{Cж}}] = rac{2 \cdot 3 \cdot \operatorname{cos} 23^{\circ}}{1 - \operatorname{sin} 23^{\circ}} = 9 \text{ МПа}$ $f = rac{90}{100} = 0.9$ $b_1 = rac{2.4}{0.9} = 2.7 \text{ M}$

Интенсивность нагрузки на крепь сверху определяется по формуле:

$$P_{\rm B} = k_{\rm p} \cdot \gamma \cdot b_{\rm 1}$$
,

где $k_{\rm p}$ — коэффициент условий работы грунтового массива, для условий задачи в соответствии со СНиП 11-44-78 принимается равным 1, γ — объемный вес суглинков.

$$P_{\rm R} = 1 \cdot 2.2 \cdot 2.7 = 5.9 \,\text{Tc/m}^2$$

Интенсивность боковой нагрузки определяется по формуле:

$$P_6 = \gamma (k_{\rm p} \cdot b_1 + 0.5h) \cdot tg^2 \left(45^{\circ} - \frac{\varphi^{\rm K}}{2}\right),$$

где γ – объемный вес, ϕ^{κ} – кажущийся угол внутреннего трения (для условий задачи известняков).

$$P_6 = 2,68 \cdot (1 \cdot 2,7 + 0,5 \cdot 3) \cdot tg^2 \left(45^{\circ} - \frac{85^{\circ}}{2}\right) = 0,021 \text{ Tc/m}^2$$

Таким образом, произведя расчёты, приходим к выводу, что значение максимальной нагрузки на крепь по концепции опускающегося столба породы ($P_{\text{max}} = 14,32 \text{ тс/m}^2$) на порядок отличается от значений, полученных по методу П.М. Цимбаревича ($P_{\text{B}} = 5,9 \text{ тс/m}^2$). Это напрямую зависит от размеров горной выработки и горно-геологических условий, в которых она проходится.

В. Определение нагрузки на крепь горизонтальной выработки по гипотезе Ю. М. Либермана

По гипотезе проф Ю. М. Либермана вокруг горной выработки образуется зона разрушенных пород (рис.). Вертикальное горное давление $P_{\rm B}$ определяется по формуле:

$$P_{\rm B} = \gamma * r_0 * \left(\left(\frac{(\gamma H - 0.5 * \sigma_{\rm CK}) * (1 - sin\rho)}{P_{\rm B}} \right)^{(1 - sin\rho)/(2sin\rho)} - 1 \right);$$

где r_0 – радиус выработки;

 $\sigma_{cж}$ – предел прочности пород на сжатие;

р – угол внутреннего трения разрушившихся пород.

Вертикальное горное давление находится *методом итераций* (последовательных приближений).

Радиус зоны обрушения R и смещение контура выработки U_0 определяются по формулам:

$$R = r_0 * ((\gamma H - 0.5\sigma_{\text{CM}})(1 - \sin\rho) * P_B^{-1})^{(1 - \sin\rho)/(2\sin\rho)};$$

$$U_0 = \alpha_p \frac{1 + \mu}{E * 10^3} * r^0 * \frac{\gamma * H * sin\rho + 0.5(1 - sin\rho) * \sigma_{\text{CK}}}{1 - sin\rho} * R;$$

где α_p – реологический коэффициент;

μ – коэффициент Пуассона;

E – модуль упругости.

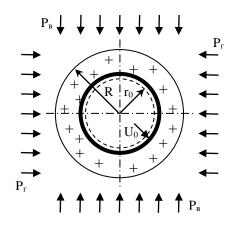


Рис. Расчетная схема к гипотезе проф. Ю. М. Либермана

Область применения гипотезы: жесткопластичные породы при соблюдении условия: $H \ge 0.5 \, \sigma_{\text{сж}}$.

Область применения гипотезы: пластичные породы $\gamma H \ge 0.5 \, \sigma_{\text{сж}}$.

Пример: $\gamma = 23 \text{ кH/m}^3$; $r_0 = 1,35 \text{ м}$; $\rho = 25^\circ$; H = 900 м; $\sigma_{\text{сж}} = 2000 \text{ кH/m}^2$; $\mu = 0,45$; $\alpha_p = 1,5$; $\mu = 0,45$; E = 120000 MHa.

Вертикальное горное давление находится методом итераций (последовательных приближений): начальное значение $P_{\rm B}$ принимается равным 0,001 кПа.

$$P_{B} = 31,05 * \left(\left(\frac{20040,79}{0,001} \right)^{0,5} - 1 \right) = 142678,5$$

Здесь 0,001 – точность вычислений.

Окончание процесса итераций определяется условием:

$$P_{\rm B} = 31,87 * \left(\left(\frac{20040,79}{0,001} \right)^{0,5} - 1 \right) < |0,001|$$

Выполняем расчет, до тех пор, пока условие не будет выполнено.

P _{B1}	142678,5
P _{B2}	10,94489
ИТ	.д.
P_{B20}	272,3794
P _{B21}	272,3838
P _{B22}	272,3821

Так как 272,38 - 272,38 < |0,001|, условие сходимости итераций выполняется и вертикальная нагрузка на крепь приближенно равна 272,38 кПа.

$$R = 1,35(1-\sin 25^{\circ})/(2\sin 25^{\circ})$$

$$= 13,6 \text{ M}.$$

$$1+0,45 \qquad 23,0.900 \sin 25^{\circ} + 0,5(1-\sin 25^{\circ}) \ 12000$$

$$U_0 = 1,5 \frac{1}{12000 \cdot 10^3} 1,35 \frac{1}{1-\sin 25^{\circ}} 13,6 = 0,048 \text{ M}.$$

Область применения гипотезы: жесткопластичные породы при соблюдении условия: $H \ge 0.5 \ \sigma_{\text{сж}}$.

Область применения гипотезы: пластичные породы $\gamma H \ge 0.5 \, \sigma_{\text{сж}}$.

Нагрузка на крепь вертикальных стволов шахт

а) Определить, на какой глубине ствола радиусом r_0 , пройденного в песчаниках, можно для определения давления использовать как формулу М.М. Протодьяконова и Н.С. Булычева.

Исходные данные: $\gamma = 2,69$ тс/м³; $\varphi = 45^{\circ}$; $H_c = 500$ м; $r_0 = 4,2$ м.

Метод Булычева — метод сползающего объема пород вокруг ствола. Давление на крепь определяется весом сползающего объема (рис. 2.2), отделённого от остальной, недеформируемой части массива, поверхностью скольжения.

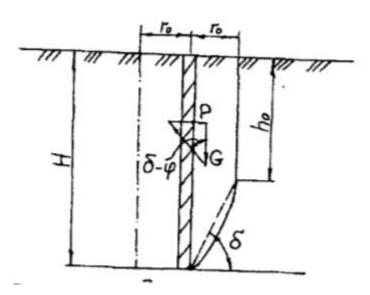


Рисунок 2.2 - Расчетная схема к определению нагрузки на крепь методом Булычева

Расчетное давление на крепь определяется по следующим выражениям:

$$P = \gamma \cdot r_0 \left(tg(\delta - \varphi) - \frac{B_1}{2B_2 \cdot \cos^2(\delta - \varphi)} \right) \tag{2.11}$$

где

$$\delta = \arctan\left(\operatorname{cosec}\varphi\left(\sqrt{1 + 2\frac{\mathrm{H_c}}{r_0}tg\varphi} - \cos\varphi\right)\right) \tag{2.12}$$

$$B_1 = \sin 2\delta + \sin 2(\delta - \varphi) - 4\frac{H}{r_0}\cos^2\delta \tag{2.13}$$

$$B_2 = 2\frac{H_c}{r_0}\sin 2\delta + \cos 2\delta + \cos 2(\delta - \varphi)$$
 (2.14)

$$\delta = arctg\left(cosec45^{\circ}\left(\sqrt{1 + 2\frac{640}{5.55}tg45^{\circ}} - cos45^{\circ}\right)\right) = 87,21^{\circ}$$

$$B_1 = \sin(2 \cdot 87,21) + \sin(2(87,21 - 45)) - 4\frac{H}{5,55}\cos^2(87,21) = 1,092 - 0,002H$$

$$B_2 = 2\frac{640}{5,55}\sin 2 \cdot 87,21^\circ + \cos 2 \cdot 87,21^\circ + \cos 2(87,21^\circ - 45^\circ) = 21,53$$

Получаем:

$$P = 2,69 \cdot 4,2 \left(tg(42,25^{\circ}) - \frac{1,092 - 0,002H}{2 \cdot 21,92 \cdot cos^{2}(87,25^{\circ} - 45^{\circ})} \right) =$$

$$= 11,3(0,908 - \frac{1,092 - 0,002H}{23,021})$$

Подставляя в полученную выше формулу различные значения H, получаем (табл. 2.2).

Таблица 2.2 – Значения давления на крепь ствола по методу Н. С. Булычева

	70	80	90
$P, \text{ TC/M}^2$ 9,747 9,766 9,775 9,785 9,794 9,80	4 9,813	9,822	9,832

продолжение табл. 2.2

Н, м	100	110	120	130	140	150	200	250	300
<i>P</i> , тс/м ²	9,841	9,851	9,860	9,869	9,879	9,888	9,935	9,982	10,029

Максимальная величина давления составит:

$$P_{max} = \frac{\gamma \cdot r_0}{tg\varphi} = \frac{2,69 \cdot 4,2}{tg45^{\circ}} = 11,33 \text{ Tc/m}^2$$

Метод профессора М. М. Протодьяконова основан на аналогии с плоскими подпорными стенками. Давление на крепь вертикального ствола оказывает вес породы за счет сползающей призмы (рис. 2.3).

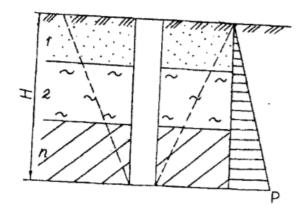


Рисунок 2.3 – Схема к определению нагрузки на крепь ствола по методу Протодьяконова

Определение на грузки производится по формуле:

$$P = \gamma \cdot H \cdot tg^2 \left(45^\circ - \frac{\varphi}{2} \right) \tag{2.15}$$

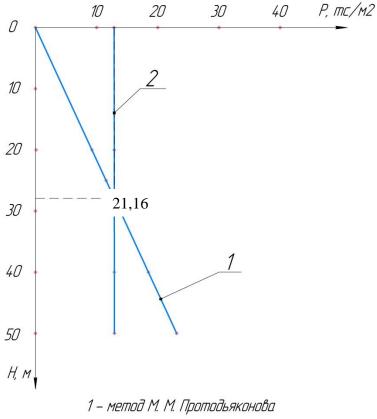

Подставляя в формулу (5) различные значения Н, получаем значения давления на крепь (таб. 2.3).

Таблица 2.3 — Значения давления на крепь ствола по методу М. М. Протодьяконова

Н, м	0	20	25	30	40	50	60	70	80	90
<i>P</i> , TC/M ²	0	9,23	11,54	13,85	18,46	23,08	27,69	32,31	36,92	41,54

Н, м	100	150	200	250	300	350	400	450	500
<i>P</i> , тс/м ²	46,15	69,23	92,31	115,38	138,46	161,54	184,61	207,69	230,77

Используя полученные результаты (см. таб. 2.2 и 2.3), строим графики зависимости P = U(H) (рис. 2.4). Находим глубину H, при которой значения давления на крепь, полученные по методу H. С. Булычева H M. М. Протодьяконова еще совпадают.

2 – метод Н. С. Булычева

Рисунок 2.4 – Давление на крепь ствола по результатам расчетов

Аналитический метод решения:

$$\gamma * r_o \left[tg(\delta - \varphi) - \frac{B_1}{2B_2 cos^2(\delta - \varphi)} \right] = \gamma * H * tg^2(45 - \frac{\varphi}{2})$$

$$2,69 * 4,2 \left[tg(87,21 - 45) - \frac{1,092 - 0,002H}{2 \cdot 21,53 \cdot cos^2(87,21 - 45)} \right]$$

$$= 2,69 * H * tg^2(45 - \frac{45}{2})$$

$$10,260 - 0,513 + 0.00094H = 0.462H$$

$$H = 21.16 \text{ M}$$

б) Определить максимальное давление и нагрузки, оказываемые засыпкой из щебня на горизонтальный полок, установленный в ремонтируемом стволе радиусом r_o .

Исходные данные:

Породы - глины твердой консистенции, v= 0,35, γ = 2,18 тс/м³, ϕ = 23°, c= 4 МПа= 0,04 тс/м², r0= 2,18 м.

Расчёт производим по формуле, характеризующей концепцию опускающегося столба породы

$$P = \frac{\gamma b - c}{\lambda * t g \varphi} \left[1 - \exp\left(-\lambda \frac{H}{b} t g \varphi\right) \right]$$
 (2.16)

Максимальное давление определяется взятием частной производной, и приравниваем ее к нулю.

$$P(H) = 0$$

$$\frac{dP}{dHH} = \frac{\gamma b - c}{\lambda * t g \varphi} - \frac{\gamma b - c}{\lambda * t g \varphi} \exp\left(-\lambda \frac{H}{b} t g \varphi\right) = \frac{\gamma_b - c}{\lambda * t g \varphi} \exp\left(-\lambda \frac{H}{b} t g \varphi\right) \frac{\lambda}{b} t g \varphi = 0.$$

$$\frac{\gamma b - c}{\lambda * t g \varphi} \exp\left(-\lambda \frac{H}{b} t g \varphi\right) = 0$$
(2.17)

Коэффициент бокового давления:

$$\lambda = \frac{0,35}{1 - 0,35} = 0,54$$

Подставляем известные данные в формулу

$$\frac{2,16*2,18-0,04}{0,54*tg23^o} \exp\left(-0.54*\frac{H}{2.18}*tg23^o\right) = 0$$

$$2.14 \exp(-0.105H) = 0 = exp = 0$$
, при $H \to \infty$

$$P_{max} = \frac{\gamma b - c}{\lambda * tg\varphi}; \tag{2.18}$$

$$P_{max} = \frac{2,16 * 2,18 - 0,04}{0,54 * t,923^{o}} = 20.17 \text{ Tc/m}^{2}$$

<u>Вывод:</u> а) для данных условий можно использовать как формулу Протодьяконова, так и формулу Булычева до глубины ствола, равным 21,16 м. Определение глубины графическим и аналитическим методами дали одинаковые результаты;

б) максимальная нагрузка, оказываемая засыпкой из щебня на горизонтальный полок равен $P_{max}=20,17\ {
m Tc/m^2}.$

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СДВИЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ И МАССИВА ГОРНЫХ ПОРОД ПРИ ОЧИСТНОЙ ВЫЕМКЕ

Цель работы — изучение методики определения параметров зон сдвижения и деформирования массива горных пород при очистной выемке.

1 Теоретическая часть

При подземной разработке рудных месторождений в массиве горных пород образуются пустоты, изменяющие его напряженное состояние. По достижению пустотами критических размеров нарушается устойчивость вмещающих пород, и они приходят в движение. Процесс сдвижения, развиваясь в толще горных пород, достигает земной поверхности и вызывает ее деформирование.

Сдвижения вмещающих пород и земной поверхности могут привести к появлению разрушительных деформаций в подрабатываемых горных выработках, зданиях, сооружениях и других объектах, а также проникновению воды в подземные выработки из подрабатываемых водных объектов.

При сдвижении горных пород вследствие подземных разработок на земной поверхности могут возникать провалы, воронки, терассы, трещины и плавные сдвижения. Взаимное расположение этих форм проявления процесса сдвижения показано на рис. 3.1.

В области сдвижения горных пород различают: зону обрушения, в пределах которой сдвижение произошло с разломом и разрушением слоев и отделением от массива отдельных кусков и глыб; зону трещин — область с нарушенной сплошностью пород и трещинами; зону плавных сдвижений, в которой наблюдается пластическая деформация пород без разрыва сплошности. Часть земной поверхности, подвергшаяся процессу сдвижения, называют тульдой сдвижения. Вертикальные разрезы мульды сдвижения по простиранию и вкрест простирания залежи через точки с наибольшими величинами оседаний земной поверхности называют главными сечениями мульды сдвижения.

Основными факторами, влияющими на характер и параметры процесса сдвижения горных пород и земной поверхности, являются:

- формы и размеры рудных тел, их мощность, соотношение площади выработанного пространства и оставляемых целиков;
 - углы падения рудных тел, вмещающих пород и их контактов;
- крепость горных пород, строение и структурные особенности горного массива;
 - обводненность слабых вмещающих пород и наносов;
 - системы разработки и способы управления горным давлением.

Границы различных зон сдвижения земной поверхности определяют, как правило, по результатам непосредственных инструментальных наблюдений. С этой целью на земной поверхности на площади вероятного влияния подземной

разработки по профильным линиям располагают серию точек в виде грунтовых реперов вкрест простирания и по простиранию залежи.

Эта сеть реперов, называемая маркшейдерской наблюдательной станцией за сдвижением земной поверхности, сооружается до начала подземных горных работ по добыче руды.

Наблюдения на указанной станции осуществляют периодически по мере развития процесса сдвижения подработанного массива и земной поверхности. При этом вертикальные перемещения реперов определяют путем нивелирования, а горизонтальные — линейными измерениями перемещений реперов вдоль и поперек профильных линий.

Если измеренные (наблюдаемые) или ожидаемые деформации превышают величины, регламентируемые нормативными документами, то используют конструктивные меры защиты охраняемых зданий и сооружений. Они заключаются в усилении конструкций зданий и ссоружений для сопротивления возможным (или проявившимся видам и величинам деформаций.

Иногда целесообразно временно изменить характер эксплуатации сооружения или перенести его на другое место.

Наиболее надежной мерой охраны объектов является оставление предохранительных (охранных) целиков. Предохранительный целик — это участок рудной залежи, временно (реже — постоянно) оставляемый в недрах для предотвращения вредного воздействия подземной разработки на охраняемый объект.

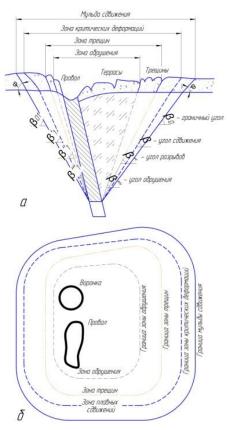


Рис. 1.1. Формы проявления процесса сдвижения: а – на разрезе вкрест простирания рудного тела; б – на плане земной поверхности

При разработке обособленных слепых рудных тел при соответствующих сочетаниях глубины залегания рудного тела, размеров и формы выработанного пространства, крепости горных пород и строении горного массива процесс сдвижения может не достигнуть земной поверхности или его проявления не будут опасными для подрабатываемых объектов.

Условие устойчивого состояния земной поверхности при отработке обособленных слепых рудных тел в покрывающих породах крепостью $4 \le f \le 16$ имеет вид:

$$H' > k_1 \cdot l_2, \tag{3.1}$$

где H' — фактическая глубина верхней границы выработанного пространства, считая от границы выветрелых пород и рыхлых отложений, м; k_1 — коэффициент, учитывающий прочностные свойства горных пород, в зависимости от коэффициента крепости покрывающих пород f (табл. 3.1); l_9 — эквивалентный пролет, вычисляемый по формуле:

$$l_{9} = \frac{L \cdot l'}{\sqrt{L^2 + l'^2}},\tag{3.2}$$

Таблица 3.1

где L – размер выработанного пространства залежи по простиранию, м; l' – размер горизонтальной проекции выработанного пространства залежи на разрезе вкрест простирания, м.

Значение коэффициента k_1 для различной крепости пород определяется по табл. 3.1.

Определение коэффициента k_1

			1					-		
f	4	5	6	7	8	9	10	12	14	16
k_1	7,0	5,9	5,1	4,3	3,6	3,0	2,6	1,8	1,2	1,0

Проекция длины обнажения висячего бока рудного тела по падению на горизонтальную плоскость $l'_{\rm п}$ определяется графически на разрезе вкрест простирания или по формуле:

$$l'_{\Pi} = l_{\Pi} \cdot \cos\alpha + m \cdot \sin\alpha, \tag{3.3}$$

Определение параметров $l'_{\rm n}$, $l_{\rm n}$ и m в различных условиях залегания слепых рудных тел приведен на рис. 3.2.

При невыполнении условия (3.1) над выработанным пространством слепых залежей с углом падения $\alpha < 70^{\circ}$ образуется воронка обрушения, если удовлетворяется неравенство:

$$\frac{V_1}{V_2} < n, \tag{3.4}$$

где V_1 — объем коренных пород, определяемый по формуле:

$$V_1 = 2/3H'_{\rm cp} \cdot S_{\rm nn}, \tag{3.5}$$

где ${H'}_{\rm cp}$ — средняя глубина расположения выработанного пространства в коренных породах, м; $S_{\rm пл}$ — площадь выработанного пространства в плане, м²; V_2

- объем выработанного пространства, определяемый по маркшейдерским данным, м 3 ; n — число, являющееся критерием самообрушения земной поверхности.

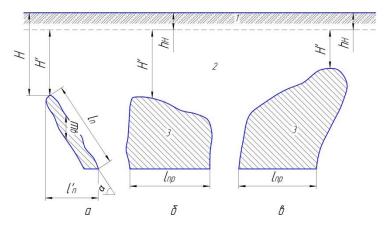


Рис. 3.2. Схема к определению параметров l'_{π} , l_{π} и m при отработке слепых рудных тел: а — разрез вкрест простирания рудного тела; б — проекция горных работ на вертикальную плоскость; в — проекция горных работ рудного тела, имеющего склонение на вертикальную плоскость; 1 — наносы; 2 — коренные породы; 3 — выработанное пространство

При выдержанной вынимаемой мощности и размерах выработанного пространства отношение объемов V_1/V_2 можно рассчитать по следующим формулам:

- изометрическая или близкая к ней форма выработанного пространства в плане (один из размеров обнажения в плане не превышает другой более чем в 1,5 раза)

$$\frac{V_1}{V_2} = \frac{H'_{cp}l'}{2ml}$$
 или $\frac{V_1}{V_2} = \frac{H'_{cp}}{2} \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{m} \right)$ (3.6)

- размеры выработанного пространства в плане L>1,5l' (или l'>1,5L)

$$\frac{V_1}{V_2} = \frac{2H'_{\rm cp}l'}{3ml}$$
 или $\frac{V_1}{V_2} = \frac{2H'_{\rm cp}}{3} \left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{m} \right)$ (3.7)

Если не выполнено условие (3.1), возможно самообрушение земной поверхности над выработанным пространством слепых залежей с углом падения $\alpha \geq 70^\circ$ при:

$$H' < k_1'' \cdot l_9'' \tag{3.8}$$

где k_1'' – коэффициент, определяемый в зависимости от строения и крепости пород f.

Границы зоны внезапного образования воронок обрушения строят с помощью линий, проведенных со стороны висячего и лежачего боков и по простирании залежи под углами 70° при крепости пород $f \le 5$; 80° при f = 6 - 10 и 85° при f = 11 - 16. Точки пересечения указанных линий с земной поверхностью на разрезах вкрест простирания и вертикальной проекции переносят на план и соединяют их плавной кривой, которая является предельным

контуром зоны возможного внезапного образования воронок обрушения и провалов на земной поверхности.

При выемке пологих и слабонаклонных залежей ($\alpha \leq 35^{\circ}$) зону возможного образования воронок обрушения и провалов на земной поверхности строят от нижней и верхней границ выработанного пространства (рис.3.3a, 336).

В случае отработки слепых залежей с углом падения $\alpha > 35^{\circ}$ построение зоны возможного образования воронок обрушения и провалов на земной поверхности со стороны падения, восстания и по простиранию производят от контура выработанного пространства на глубине в коренных породах (рис. 3.3в, 3.3г):

$$H_0' = k_0' \frac{S_p}{I'},$$

где k_0' — коэффициент, определяемый в зависимости от строения пород, угла падения α и значения f по табл. 3.2; S_p — площадь рудного тела на разрезе вкрест простирания, M^2 .

Определение коэффициента $m{k_0'}$

 $8 < f \le 11$ f = 6 - 8 $11 < f \le 16$ Угол падения рудного тела α , град. 35 - 555 4,5 3,5 56 - 704,5 3 3,7 3 71 - 903 3,7

При глубине горных работ H_1 меньше рассчитанного значения H_0' построение границ зоны внезапного образования воронок обрушения и провалов со стороны паления и по простиранию производят от нижней границы выработанного пространства (рис. 3.3д, 3.3 е).

Границы области опасных сдвижений в толще пород при разработке слепых рудных залежей ограниченных размеров строят относительно границ выработанного пространства по линейным и угловым параметрам. К первым параметрам относятся углы $\beta_{\rm oc}$ и $\gamma_{\rm oc}$, используемые для определения границ области опасных сдвижений в висячем боку залежи соответственно от нижней и верхней границ выработанного пространства, угол $\beta_{\rm 1oc}$, которым определяются границы этой области со стороны лежачего бока от нижней границы выработанного пространства, и угол $\delta_{\rm oc}$, используемый для построения границ области опасных сдвижений по простиранию залежи.

К линейным параметрам относится высота области опасных сдвижений $h_{\rm oc}$:

$$h_{\rm oc} = k_2 \frac{s_{\rm p}}{l'} \tag{3.9}$$

Таблица 3.2

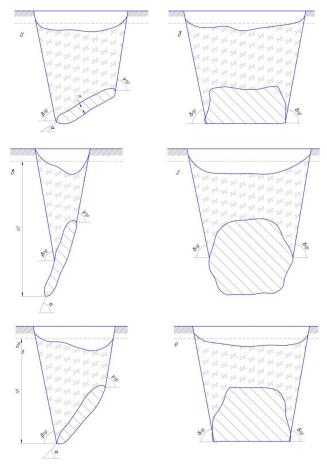


Рис. 3.3. Построение границ зоны возможного образования воронок и провалов при разработке слепых залежей

Построение границ области опасных сдвижений в подработанном массиве пород над залежами показана на рисунке 3.3. Для залежей с углом падения $\alpha \le$ 35° эта область оконтуривается на разрезах вкрест простирания по падению – линией, проведенной под углом $eta_{
m oc}$ от нижней границы выработанного пространства и линией, параллельной контактам пород с рудным телом и удаленной от кровли выработки по нормали на высоту $h_{\rm oc}$; по восстанию – двумя линиями, одна из которых проводится под углом $\gamma_{\rm oc}$ от верхней границы выработанного пространства и другая горизонтально, на уровне $h_{\rm oc}$ от этой границы; по простиранию – линиями, проведенными под углом $\delta_{\rm oc}$ от нижней и выработанного границ пространства пересечения верхней до соответствующими горизонтальными линиями, проведенными на уровне В и С (D). Построенные линии, пересекаясь, образуют многоугольник, в который вписывается криволинейный контур зоны опасных сдвижений.

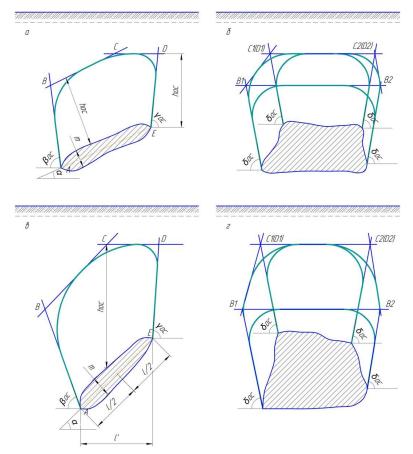


Рис. 3.3. Построение границ зоны опасных сдвижений в толще пород над выработанным пространством слепых залежей: а – разрез вкрест простирания и б – вертикальная проекция при угле падения $\alpha \le 35^\circ$; в и г – соответсвенно то же для $35^\circ \le \alpha \le 60^\circ$

При построении границ зоны опасных сдвижений для залежей с углом падения $35^{\circ} < \alpha < 60^{\circ}$ сначала получают на разрезах вкрест простирания точку С, которая расположена на вертикальной линии, проведенной через середину обнажения кровли, и удалена от нее на величину $h_{\rm oc}$. Затем через точку С проводят две линии: одну — параллельно контактам пород с рудным телом до пересечения с линией, проведенной под углом $\beta_{\rm oc}$ от нижней границы выработанного пространства, и другую — горизонтально до пересечения с линией, проведенной под углом $\gamma_{\rm oc}$ от верхней границы выработанного пространства. По простиранию зону опасных сдвижений оконтуривают так же, как и при $\alpha \leq 35^{\circ}$.

2 Порядок выполнения работы

Задание:

Определить степень влияния подземной отработки слепой залежи на дневную поверхность и сделать необходимые построения на чертеже.

- 1. В соответствии с формулой (3.1) определяется устойчивость земной поверхности.
- 2. В зависимости от влияния подземных горных работ на дневную поверхность определяются границы области опасных сдвижений:
 - границы зоны возможного образования воронок и провалов;

- границ зоны опасных сдвижений в толще пород над выработанным пространством.
- 3. Установить возможность дальнейшей эксплуатации вышерасположенных подготовительных выработок.

3 Пример выполнения работы

Подлежит отработке рудная залежь, над которой на уровне соответственно 50 и 100 м от ее верхнего контура расположены действующие подготовительные выработки. Размеры залежи: по простиранию L=82 м и по падению l=64 м. Мощность залежи 8 м, угол падения 40° . Глубина до верхнего контура залежи в коренных невыветрелых породах H'=250 м. Вмещающие породы представлены сиенитами и скарнами с коэффициентом крепости f=8 и интенсивностью трещиноватости W<2 м $^{-1}$.

Требуется определить границы области опасных сдвижений и после этого установить возможность дальнейшей эксплуатации вышерасположенных подготовительных выработок.

1. В соответствии с формулой (3.1) земная поверхность сохранит устойчивое состояние, если:

$$H' > k_1 \cdot l_3$$

- 2. На основе исходных данных определим значения k_1 и l_3 .
- 3. Согласно табл. 3.1 при крепости пород f=8 соответствует значение коэффициента $k_1=3$,6.
- 4. Размер горизонтальной проекции l', необходимый для определения параметра $l_{\mathfrak{I}}$. составляет:

$$l' = 64 \cdot cos40^{\circ} + 8 \cdot sin40^{\circ} = 54 \text{ M}$$

$$l'_{9} = \frac{82 \cdot 54}{\sqrt{82^{2} + 54^{2}}} = 45 \text{ M}$$

5. Расчетная величина глубины:

$$H_{\rm p}' = 3.6 \cdot 45 = 162 \,\mathrm{M}$$

Так как $H' > H'_p$, следовательно, земная поверхность сохранит устойчивое состояние, а область опасных сдвижений замкнется в подработанном массиве пород.

6. Вычисляем высоту области опасных сдвижений в толще пород:

$$h_{\rm oc} = 11 \cdot \frac{512}{54} = 104 \text{ M}$$

7. Производим построения границы области опасных сдвижений в толще пород. Параметр $h_{\rm oc}=104$ м откладываем от середины обнажения кровли и получаем точку C, через которую проводим две линии: одну — параллельно контактам пород с залежью до пересечения с линией, проведенной под углом $\beta_{\rm oc}=64^{\circ}$ от нижней границы выработанного пространства, и другую — горизонтально до пересечения с линией, проведенной под углом $\gamma_{\rm oc}=80^{\circ}$ от верхней границы выработанного пространства.

На вертикальной проекции линии строим от верхней и нижней границ выработки под углом $\beta_{\rm oc}=85^{\circ}$ до пересечения с горизонтальными линиями, проведенными через точки B и C (D).

В построенный многоугольник вписывается криволинейный контур области опасных сдвижений.

8. Вывод: из построений следует что выработка, расположенная на расстоянии 50 м от верхней границы залежи, попадает в область опасных сдвижений и тем самым при выемке залежи создаются опасные условия для эксплуатации этой выработки на участке, показанном на вертикальной проекции штриховкой. В то же время вторая (верхняя) выработка окажется вне области опасных сдвижений и останется в рабочем состоянии.

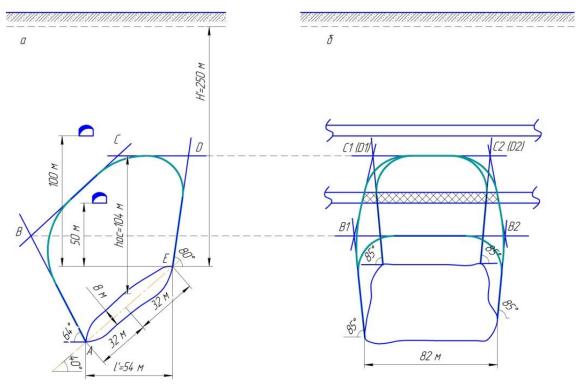


Рис. 3.5. Построение границ зоны опасных сдвижений в толще пород: а – разрез вкрест простирания; б – вертикальная проекция

4 Варианты заданий

No	Глубина	Размер по	Размер по	Мощность	Коэффициент
варианта	разработки,	простиранию,	падению,	рудного	крепости
	M	M	M	тела, м	
1	200	60	40	8	7
2	220	65	45	10	9
3	240	70	50	12	12
4	260	75	55	14	7
5	280	80	60	16	9
6	300	90	70	20	12
7	320	60	40	8	7
8	340	65	45	10	9

9	360	70	50	12	12
10	380	75	55	14	7
11	400	80	60	16	9
12	420	90	70	20	12
13	440	60	40	8	7
14	460	65	45	10	9
15	480	70	50	12	12
16	500	75	55	14	7
17	520	80	60	16	9
18	540	90	70	20	12
19	560	60	40	8	7
20	580	65	45	10	9
21	600	70	50	12	12
22	620	75	55	14	7
23	640	80	60	16	9
24	660	90	70	20	12
25	680	60	40	8	7

Практическая работа 5 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СДВИЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ПО РЕЗУЛЬТАТАМ ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ НА НАБЛЮДАТЕЛЬНЫХ СТАНЦИЯХ

Цель работы. Научиться определять сдвижения и деформации земной поверхности по результатам наблюдений, изображать их в виде графиков и устанавливать основные параметры сдвижений и деформаций земной поверхности.

Исходные данные

- 1. Геологические и горнотехнические условия в районе закладки профильной линии (табл. 2.1).
- 2. Результаты начальных и конечных маркшейдерских наблюдений по профильным линиям.
- 3. Абсолютная отметка репера 26 и расстояние от него до опорного репера из конечного наблюдения соответствуют их значениям из начального наблюдения.

Таблица 2.1

Геологические и горнотехнические условия

Вариа нт	Глубина залегания пласта под рабочим репером №15	Длина лавы, м	Угол падения пласта, град	Мощность пласта, м	Мощность наносов, м
1	150	190	19	1,2	15
2	142	175	17	1,6	10
3	150	180	18	2,5	15

4	140	170	20	2,3	15
5	85	95	25	2,6	12
6	66	90	20	2,7	14
7	75	92	15	1,0	16
8	69	100	19	1,4	12
9	80	95	15	1,3	10
10	74	100	18	1,2	15
11	93	110	17	1,4	12
12	90	102	13	2,0	18
13	115	125	15	1,8	13
14	105	110	16	1,2	20
15	115	130	10	2,0	18
16	120	140	20	1,6	16
17	115	145	14	1,7	10
18	120	150	10	2,6	14
19	80	95	30	2,5	16
20	130	150	25	3,0	10

Порядок выполнения работы

- 1. В соответствии с номером варианта выписать из табл. 2.1 геологические и горнотехнические условия в районе закладки профильной линии.
- 2. Составить геологический разрез по профильной линии в масштабе 1:1000 или 1:2000. На разрезе изобразить поверхность земли, наносы, места заложения рабочих реперов на поверхности (на основании горизонтальных расстояний между реперами), угольный пласт.

Для профильной линии в разрезе вкрест (четные варианты) простирания центр очистных работ совпадает с горизонтальной проекцией репера 15 на плоскость пласта и для профильной линии по простиранию - проекция репера 9 на плоскость пласта совпадает с границей лавы.

- 3. Нанести на геологический разрез положение горных работ.
- 4. Произвести аналитическую обработку результатов наблюдений по профильной линии:
- вычислить оседание рабочих реперов (сдвижения в вертикальной плоскости), мм,

$$\eta_i = Z_i^0 - Z_i^k,$$

где Z_i^0 , Z_i^k — абсолютная отметка рабочего репера соответственно из начального и конечного наблюдения;

– вычислить горизонтальные сдвижения рабочих реперов

$$\xi_i = D_i^k - D_i^0,$$

где D_i^k , D_i^0 — горизонтальные расстояния вдоль профильной линии от опорного репера до рабочего репера i соответственно из начального и конечного наблюлений:

– определить горизонтальные расстояния между рабочими реперами из начального и конечного наблюдений:

$$L_n^0 = D_i^0 - D_{i-1}^0 \ u \ L_n^k = D_i^k - D_{i-1}^k$$

где D_i^0 , D_{i-1}^0 — горизонтальные расстояния от опорного до i-го и (i-1) рабочих реперов из начального наблюдения, м (табл. 2.2, графа 4); D_i^k , D_{i-1}^k — то же из конечного наблюдения, м (табл. 2.2, графа 5);

- определить среднюю длину интервала

$$\overline{L} = \frac{L_n + L_{n+1}}{2};$$

- определить наклоны отдельных интервалов

$$i = \frac{\eta_i - \eta_{i-1}}{L_n},$$

где η_i , η_{i-1} — оседания последующего и предыдущего реперов, мм; L_n — расстояние между реперами, м;

- вычислить кривизну отдельных интервалов

$$K=\frac{i_n-i_{n-1}}{\overline{L}},$$

где i_n, i_{n-1} — наклоны последующего и предыдущего интервалов; \overline{L} — средняя длина смежных интервалов, м;

- определить горизонтальные деформации интервалов

$$\varepsilon = \frac{L_n^k + L_n^0}{L_n^0} .$$

Параметры процесса сдвижения земной поверхности в зависимости от вида профильной линии определяют на вертикальных разрезах вкрест простирания (граничные углы β_0 , γ_0 или углы сдвижения β , γ , угол максимального оседания Θ , углы полных сдвижений ψ_1 , ψ_2) и по простиранию пласта (граничный угол δ_0 , угол сдвижения δ , угол полного сдвижения ψ_3).

Расчет параметров сдвижений и деформаций для удобства рекомендуем производить в табл. 2.2.

- 5. Построить по данным аналитической обработки результатов наблюдений графики сдвижений и деформаций (рис. 2.1):
 - оседаний;
 - горизонтальных сдвижений;
 - наклонов;
 - кривизны;
 - сжатий и растяжений.
- 6. На графиках деформаций в соответствии с принятым масштабом их построения нанести:

- граничные значения деформаций i_p, ε_e и определить граничные углы δ_0 на разрезе по простиранию, β_0, γ_0 на разрезе по падению;
- опасные значения деформаций i_0, K_0, ε_0 и определить углы сдвижения δ на разрезе по простиранию, β, γ на разрезе по падению.

Расчет параметров сдвижений и деформаций земной поверхности

репера	отметк	ютные си репе- в, м	ное рас от опор рабо	онталь- стояние оного до очих очих	Расстояние между реперами, м		Расстояние между		Расстояние межту		Расстопина ма		Расстояние между		Расстояние между		Расстояние между		Расстояние межлу		іе, мм	альные ия, мм	ı, ×10 ⁻³	×10 ⁻³ , 1/м	альные и, ×10 ⁻³	оседания, мм/сут	горизонтальных ений, мм/сут
№ pen	из начального наблюдения	из конечного наблюдения	из начального наблюдения	из конечного наблюдения			Средняя длина смежных интервалов	Оседание	Горизонтальные сдвижения, мм	Наклоны,	Кривизна, >	Горизонтальные деформации, ×10	Скорость осед	Скорость гориз сдвижений,													
	Z_i^o	Z_i^k	D_i^o	D_i^k	L_n^o	L_n^k	L_n	\overline{L}	η	ξ	i	K	3	V	U												
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16												
1	307,926	307,926	87,532	87,532					0	0				0,00	0,00												
					14,365	14,372	14,369				0,626		0,49														
2	307,349	307,340	101,897	101,904				14,496	9	-7		0,018		0,14	-0,11												
					14,619	14,628	14,624				0,889		0,62														
3	307,413	307,391	116,516	116,532				14,539	22	-16		0,006		0,33	-0,24												
					14,451	14,460	14,456				0,968		0,63														

Таблица 2.2

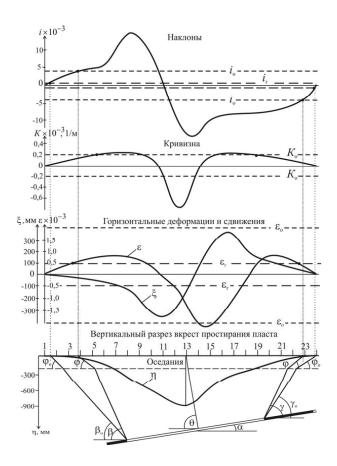


Рис. 2.1. Схема к определению параметров процесса сдвижения

- 7. На графике оседаний установить точку максимального оседания и определить угол максимального оседания Θ (на разрезе по падению); установить границы плоского дна мульды сдвижения и определить угол полных сдвижений ψ_3 (на разрезе по простиранию).
- 8. Сравнить полученные по результатам наблюдений граничные углы, углы сдвижений, угол максимального оседания и угол полных сдвижений с рекомендуемыми «Правилами охраны...».
- 9. Установить характерные точки графиков сдвижений и деформаций и выявить их взаимосвязь.
- 10. Вычислить скорости оседаний и горизонтальных сдвижений, учитывая, что начальные наблюдения выполнены 22 мая, а конечные 26 июля.
- 11. Построить графики скоростей оседаний и горизонтальных сдвижений и установить точки с максимальными скоростями оседаний и горизонтальных сдвижений.
- 12. Сделать выводы по результатам наблюдений сдвижений земной поверхности под влиянием горных разработок.

По рассчитанным значениям сдвижений и деформаций строят графики относительно рабочих реперов на вертикальных разрезах в масштабах, удобных для построения и использования.

Для определения граничных углов $\beta_0, \gamma_0, \delta_0$ на графиках на краях мульды сдвижения отмечают граничные значения деформаций:

$$i = \pm 0.5 \cdot 10^{-3}$$
; $\varepsilon = \pm 0.5 \cdot 10^{-3}$.

Полученные точки проецируют на разрез и от крайней из них проводят линии под углом φ_0 в наносах и далее до границ очистных работ. Углы сдвижения в наносах φ_0 и φ принимаются по «Правилам охраны...».

Аналогично определяют и углы сдвижения β, γ, δ по значениям опасных деформаций:

$$i = \pm 4 \cdot 10^{-3}$$
; $\varepsilon = \pm 2 \cdot 10^{-3}$; $K = \pm 2 \cdot 10^{-3}$.

Угол максимального оседания Θ определяется на вертикальном разрезе вкрест простирания как угол со стороны падения пласта между горизонтальной линией и линией, соединяющей середину горных работ с точкой максимального оседания (по графику оседаний) на земной поверхности. На разрезе по простиранию определяют также угол полного сдвижения ψ_3 .

Полученные значения граничных углов $\beta_0, \gamma_0, \delta_0$, углов сдвижений β, γ, δ , угла максимальных оседаний Θ и углов полных сдвижений ψ_1, ψ_2, ψ_3 сравнивают с приведенными в «Правилах охраны...».

Скорости оседаний и горизонтальных сдвижений, мм/сут, определяются по формулам:

$$V = \frac{\Delta \eta}{\Delta t}, \ U = \frac{\Delta \xi}{\Delta t},,$$

где Δt – время между наблюдениями, по которым определялись $\Delta \eta u \Delta \xi$, сут.

Исходные данные

Результаты наблюдений по профильным линиям

		Вариа	ит 1		Вариант 2					
g.	Абсолюти	ње отметки	Горизонтальные	расстояния от	g.	Абсолютн	ые отметки	Горизонтальные	расстояния от	
репера	репе	ров, м	опорного до рабо	чих реперов, м	репера	репер	OOB, M	опорного до рабочих реперов, м		
	начальное	конечное	начальное	конечное	8,	начальное	конечное	начальное	конечное	
2	наблюдение	наблюдение	наблюдение	наблюдение	2	наблюдение	наблюдение	наблюдение	наблюдение	
1	316,275	316,275	512,906	512,906	1	233,599	233,599	66,404	66,404	
2	315,724	315,720	497,544	497,544	2	233,162	233,155	77,301	77,307	
3	315,071	315,062	481,851	481,850	3	233,210	233,193	88,392	88,404	
4	314,315	314,299	466,391	466,386	4	233,599	233,572	99,354	99,373	
- 5	313,527	313,500	450,729	450,716	5	233,774	233,737	110,524	110,550	
6	311,972	311,934	435,797	435,770	6	233,654	233,603	121,634	121,670	
7	312,095	312,042	420,206	420,149	7	233,851	233,770	132,601	132,656	
8	311,838	311,763	405,146	405,056	8	233,429	233,288	143,523	143,607	
9	312,881	312,762	390,089	389,958	9	233,092	232,865	154,505	154,649	
10	313,813	313,634	374,865	374,681	10	233,026	232,620	165,601	165,869	
11	314,564	314,292	359,372	359,144	11	233,417	232,821	176,484	176,835	
12	315,034	314,580	344,223	343,943	12	233,197	232,475	187,455	187,766	
13	315,346	314,561	328,386	328,482	13	232,796	231,987	198,398	198,590	
14	316,138	315,140	313,527	313,532	14	233,089	232,240	209,502	209,601	
15	316,868	315,696	298,277	298,470	15	232,871	232,018	220,572	220,608	
16	317,316	316,185	283,233	283,568	16	232,762	231,899	231,283	231,298	
17	317,428	316,430	268,958	269,412	17	232,400	231,535	242,473	242,479	
18	317,414	316,616	253,664	254,192	18	232,063	231,208	253,160	253,161	
19	316,676	316,109	238,901	239,405	19	231,900	231,036	264,035	264,032	
20	316,400	316,022	223,662	224,097	20	232,128	231,274	275,968	275,964	
21	316,206	315,995	208,610	208,893	21	232,370	231,510	287,135	287,130	
22	315,716	315,576	193,074	193,265	22	232,079	231,229	299,068	299,049	
23	315,534	315,441	177,699	177,833	23	231,476	230,625	309,173	309,153	
24	314,606	314,550	162,413	162,513	24	230,788	229,947	320,977	320,957	
25	314,251	314,238	147,561	147,633	25	230,149	229,293	331,617	331,596	

		Вариа	нт 3		Вариант 4					
pa.	Абсолютные отметки Горизонтальные расстояния от опорного до рабочих реперов, м начальное конечное начальное конечное				pg.	Абсолютн	ые отметки	Горизонтальные расстояния от		
1 2	репе	ров, м	опорного до рабо	чих реперов, м	репера	реперов, м		опорного до рабочих реперов, м		
, či,	начальное	конечное	начальное	конечное	Ď,	начальное	конечное	начальное	конечное	
ž	наблюдение	наблюдение	наблюдение	наблюдение	2	наблюдение	наблюдение	наблюдение	наблюдение	
1	299,407	299,407	485,551	485,551	1	312,174	312,174	88,739	88,739	
2	298,886	298,883	471,008	471,008	2	311,588	311,580	103,303	103,310	
3	298,267	298,258	456,152	456,151	3	311,647	311,631	118,123	118,139	
4	297,551	297,534	441,516	441,512	4	312,171	312,137	132,773	132,798	
5	296,806	296,780	426,690	426,677	5	312,412	312,357	147,700	147,735	
6	295,333	295,298	412,554	412,528	6	312,257	312,178	162,547	162,595	
7	295,449	295,400	397,795	397,741	7	312,510	312,401	177,203	177,276	
8	295,207	295,136	383,538	383,453	8	311,946	311,758	191,798	191,911	
9	296,194	296,081	369,284	369,160	9	311,496	311,192	206,475	206,667	
10	297,077	296,906	354,872	354,698	10	311,408	310,865	221,303	221,661	
11	297,767	297,530	340,205	339,989	11	311,930	311,133	235,857	236,316	
12	298,326	297,826	325,864	325,599	12	311,636	310,671	250,508	250,923	
13	298,528	297,784	311,156	310,963	13	311,100	310,018	265,132	265,388	
14	299,372	298,332	296,806	296,810	14	311,492	310,357	279,970	280,103	
15	299,968	298,859	282,368	282,552	15	311,200	310,060	294,764	294,813	
16	300,392	299,322	268,127	268,444	16	311,055	309,901	309,078	309,098	
17	300,499	299,553	254,613	255,043	17	310,571	309,414	324,032	324,039	
18	300,485	299,729	240,135	240,636	18	310,120	308,978	338,312	338,315	
19	299,786	299,249	226,159	226,636	19	309,922	308,778	352,847	352,843	
20	299,525	299,167	211,733	212,145	20	310,207	309,066	368,794	368,788	
21	299,342	299,141	197,484	197,780	21	310,53	309,382	383,734	383,717	
22	298,877	298,745	182,777	182,957	22	310,142	309,006	399,664	399,639	
23	298,705	298,627	168,222	168,348	23	309,222	308,099	413,167	413,150	
24	297,826	297,774	153,751	153,846	24	308,416	307,293	428,942	428,915	
25	297,500	297,479	139,691	139,759	25	307,536	306,418	443,161	443,133	

		Вариа	ит 5		Вариант б					
g.	Абсолютн	ые отметки	Горизонтальные	расстояния от	ba.	Абсолютн	ые отметки	Горизонтальные	расстояния от	
репера	репе	ров, м	опорного до рабо		репера	реперов, м		опорного до рабочих реперов, м		
8.	начальное	конечное	начальное	конечное	PG.	начальное	конечное	начальное	конечное	
2	наблюдение	наблюдение	наблюдение	наблюдение	ž	наблюдение	наблюдение	наблюдение	наблюдение	
1	305,733	305,733	495,809	495,809	1	307,926	307,926	87,532	87,532	
2	305,200	305,197	480,959	480,959	2	307,349	307,340	101,897	101,904	
3	304,568	304,559	465,789	465,788	3	307,413	307,391	116,516	116,532	
4	303,837	303,820	450,844	450,840	4	307,926	307,890	130,967	130,992	
5	303,076	303,050	435,705	435,692	5	308,157	308,108	145,690	145,725	
6	301,572	301,536	421,270	421,244	6	307,999	307,931	160,335	160,383	
7	301,691	301,641	406,199	406,144	7	308,258	308,151	174,792	174,864	
8	301,443	301,371	391,641	391,554	8	307,702	307,516	189,189	189,3	
9	302,451	302,337	377,086	376,959	9	307,258	306,958	203,666	203,856	
10	303,353	303,179	362,370	362,191	10	307,171	306,636	218,292	218,646	
11	304,078	303,816	347,392	347,172	11	307,686	306,900	232,648	233,100	
12	304,629	304,094	332,739	332,488	12	307,396	306,444	247,100	247,509	
13	304,835	304,075	317,730	317,533	13	306,868	305,801	261,525	261,777	
14	305,696	304,635	303,076	303,080	14	307,254	306,134	276,161	276,292	
15	306,305	305,173	288,334	288,521	15	306,966	305,841	290,754	290,802	
16	306,739	305,646	273,792	274,115	16	306,823	305,685	304,873	304,893	
17	306,848	305,882	259,992	260,432	17	306,346	305,205	319,534	319,531	
18	306,833	306,062	245,208	245,720	18	306,901	305,774	333,716	333,712	
19	306,120	305,572	230,937	231,424	19	305,704	304,578	348,046	348,042	
20	305,853	305,487	216,207	216,627	20	305,986	304,861	363,776	363,770	
21	305,666	305,469	201,656	201,959	21	306,305	305,173	378,496	378,489	
22	305,192	305,057	186,822	187,015	22	305,922	304,802	394,226	394,201	
23	305,026	304,926	171,776	171,905	23	305,113	304,006	407,546	407,520	
24	304,117	304,065	156,999	157,096	24	304,220	303,112	423,080	423,053	
25	303,795	303,783	142,642	142,712	25	303,352	302,250	437,032	437,009	

		Вариа	нт 7		Вариант 8					
pg.	Абсолютн	ње отметки	Горизонтальные	расстояния от	pg.	Абсолютн	ые отметки	Горизонтальные	расстояния от	
репера	репе	ров, м	опорного до рабо	чих реперов, м	№ репера	репер	OB, M	опорного до рабочих реперов, м		
pd.	начальное	конечное	начальное	конечное	24	начальное	конечное	начальное	конечное	
Ž	наблюдение	наблюдение	наблюдение	наблюдение		наблюдение	наблюдение	наблюдение	наблюдение	
1	309,950	309,950	502,647	502,647	1	146,654	146,654	42,257	42,257	
2	309,410	309,407	487,593	487,593	2	148,376	148,371	49,192	49,192	
3	308,769	308,760	472,214	472,213	3	148,406	148,396	56,249	56,257	
4	308,028	308,011	457,063	457,058	4	148,654	148,637	63,225	63,237	
5	307,256	307,230	441,714	441,701	5	148,765	148,742	70,333	70,350	
6	305,732	305,695	427,081	427,054	6	148,689	148,656	77,403	77,426	
7	305,853	305,801	411,801	411,746	7	148,814	148,763	84,382	84,417	
8	305,601	305,528	397,043	396,954	8	148,546	148,456	91,332	91,386	
9	306,623	306,507	382,287	382,159	9	148,331	148,186	98,321	98,413	
10	307,537	307,361	367,368	367,187	10	148,288	148,031	105,382	105,553	
11	308,272	308,006	352,184	351,961	11	148,548	148,158	112,308	112,531	
12	308,831	308,288	337,339	337,064	12	148,398	147,939	119,290	119,487	
13	309,040	308,269	322,112	321,912	13	148,143	147,628	126,253	126,375	
14	309,913	308,837	307,256	307,261	14	148,329	147,789	133,310	133,382	
15	310,530	309,382	292,311	292,501	15	148,191	147,648	140,364	140,387	
16	310,970	309,861	277,568	277,896	16	148,121	147,572	147,180	147,190	
17	311,080	310,101	263,578	264,024	17	147,897	147,340	154,301	154,304	
18	311,065	310,283	248,590	249,109	18	147,676	147,132	161,102	161,102	
19	310,342	309,786	234,122	234,616	19	147,582	147,038	168,022	168,020	
20	310,073	309,701	219,189	219,615	20	147,718	147,174	175,616	175,613	
21	309,882	309,675	204,437	204,745	21	147,872	147,325	182,722	182,716	
22	309,401	309,264	189,213	189,399	22	147,687	147,146	190,316	190,304	
23	309,223	309,132	174,145	174,276	23	147,296	146,761	196,746	196,731	
24	308,313	308,259	159,164	159,263	24	146,865	146,330	204,258	204,240	
25	307,986	307,973	144,610	144,680	25	146,446	145,914	211,032	211,016	

Вариант 9						Вариант 10					
репера	Абсолюти	ые отметки	Горизонтальные		ed.	Абсолютн	ые отметки	Горизонтальные			
E E	репе	ров, м	опорного до рабо	чих реперов, м	репера	репер	OB, M	опорного до рабочих реперов, м			
24	начальное	конечное	начальное	конечное	24	начальное	конечное	начальное	конечное		
2	наблюдение	наблюдение	наблюдение	наблюдение	Ne	наблюдение	наблюдение	наблюдение	наблюдение		
1	253,020	253,020	410,324	410,324	1	157,149	157,149	44,672	44,672		
2	252,580	252,577	398,035	398,035	2	156,854	156,850	52,003	52,006		
3	252,056	252,049	385,481	385,480	3	156,887	156,876	59,463	59,472		
4	251,452	251,437	373,112	373,109	4	157,149	157,130	66,838	66,851		
- 5	250,822	250,800	360,583	360,572	- 5	157,266	157,241	74,352	74,370		
6	249,577	249,547	348,637	348,616	6	157,186	157,151	81,826	81,851		
7	249,776	249,734	336,164	336,119	7	157,318	157,263	89,204	89,241		
8	249,470	249,410	324,116	324,044	8	157,034	156,939	96,552	96,608		
9	250,304	250,210	312,071	311,966	9	156,807	156,654	103,940	104,037		
10	251,051	250,907	299,892	299,744	10	156,760	156,490	111,404	111,585		
11	251,651	251,434	287,497	287,315	11	157,026	156,625	118,726	118,962		
12	252,107	251,664	275,387	275,154	12	156,878	156,393	126,106	126,315		
13	252,349	251,648	262,949	262,786	13	156,608	156,064	133,468	133,597		
14	252,990	252,112	250,822	250,815	14	156,805	156,234	140,927	141,007		
15	253,499	252,557	238,621	238,776	15	156,659	156,084	148,385	148,409		
16	253,853	252,949	226,586	226,854	16	156,585	156,004	155,590	155,600		
17	253,943	253,144	215,166	215,530	17	156,342	155,760	163,118	163,122		
18	253,931	253,293	202,831	203,354	18	156,115	155,540	170,307	170,308		
19	253,340	252,887	191,120	191,524	19	156,015	155,434	177,624	177,621		
20	253,120	252,817	178,930	179,278	20	156,158	155,584	185,651	185,648		
21	252,965	252,796	166,888	167,138	21	156,321	155,743	193,164	193,160		
22	252,572	252,461	154,459	154,612	22	156,126	155,554	201,191	201,179		
23	252,427	252,323	142,159	142,266	23	156,713	156,148	207,989	207,976		
24	251,684	251,640	129,930	130,010	24	155,257	154,692	215,930	215,920		
25	251,417	251,390	118,049	118,106	25	154,814	154,252	223,088	223,079		