

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ ПО ДИСЦИПЛИНЕ

ВСКРЫТИЕ РУДНЫХ МЕСТОРОЖДЕНИЙ

Специальность	21.05.04 Горное дело					
Специализация	Подземная разработка рудных месторождений					
Уровень высшего образования	Специалитет					
	(бакалавриат, специалитет, магистратура)					
Квалификация выпускника	горный инженер (специалист)					

Автор - разработчик: Мажитов А. М., канд. техн. наук, доцент Рассмотрено на заседании кафедры разработки месторождений полезных ископаемых Одобрено Методическим советом университета 30 июня 2021 г., протокол № 4

г. Верхняя Пышма 2021

Практическая работа 1. Выбор способа разработки и определение границ между открытыми и подземными работами

Горно-геологическая характеристика месторождения

Месторождение вмещает два рудных тела. Мощность первого рудного тела равна 20м, второго-15м, следовательно, месторождение - мощное, очистную выемку при крутом падении можно производить по простиранию на всю мощность. Угол падения рудных тел составляет 65^{0} -месторождение крутопадающее. Длина по простиранию равна 930м. Глубина залегания рудных тел составляет 700м. Мощность наносов равна 12м. Крепость руды - $f_{\rm p}=11$, крепость вмещающих пород - $f_{\rm n}=10$. По виду полезного компонента - руда железная.

Крепость	Углы сдвижен	ия пород, граду	c	
пород	β_1	β	γ	δ
10-12	60	70	70	75

1.1 Выбор способа разработки и определение границ между открытыми и подземными работами

В зависимости от горно-геологических условий месторождение может быть отработано открыто-подземным (верхняя часть — открытым способом, нижняя — подземным способом).

При обосновании того или иного способа разработки месторождения возможны два случая в зависимости от угла падения залежи.

Подземный способ разработки применяют при выполнении условия:

$$H/m > K_{rp}$$

где H – мощность горных пород над рудным телом; m – вертикальная мощность рудного тела; K_{rp} - граничный коэффициент вскрыши (табл. 4.2).

Аналитическим методом предельная глубина карьера может быть определена для однородного рудного тела по формуле:

$$H_K = \frac{K_{IP} \cdot m_{\Gamma}}{ctg \, \gamma_B + ctg \, \gamma_{II}} + \frac{C_B - C_H}{C_B} \, h_H, \, M,$$

где m_{Γ} - горизонтальная мощность залежи, м; γ_{B} , γ_{Π} - углы откоса бортов карьера по висячему и лежачему бокам, градус ($\gamma_{B}=40-45^{\circ}$, $\gamma_{\Pi}=35-40^{\circ}$; C_{B} , C_{H} - затраты на 1 м³ вскрышных работ по коренным породам и наносам: ($C_{B}=1,0$ - 2,5 у.е./м³, $C_{H}=0,5$ - 1,0 у.е./м³); h_{H} - мощность наносов, м.

$$H_{\kappa 1} = \frac{8 \cdot 20}{ctg40^{\circ} + ctg40^{\circ}} + \frac{2-1}{2} \cdot 12 \approx 75$$
 m;

$$H_{\kappa 1} = \frac{8 \cdot 15}{ctg40^{\circ} + ctg40^{\circ}} + \frac{2-1}{2} \cdot 12 \approx 60$$
 M.

Принимаю среднюю глубину карьера для обоих рудных тел 70 м.

1.2 Подсчёт промышленных запасов руды

По данным размерам шахтного поля подсчитываются балансовые запасы месторождения.

Балансовые запасы рудного тела.

$$B_{\delta} = \frac{m_{e}(H_{\kappa} - H_{H})}{\sin \alpha} \cdot L_{np} \cdot \gamma_{p}, T,$$

где L_{np} – длина месторождения по простиранию, м;

 m_{Γ} – горизонтальная мощность рудного тела, м;

 H_{H} , H_{K} -начальная и конечная глубина залегания рудного тела, м;

 α - угол падения рудных тел, град;

 γ_{p} -объемная плотность руды т/м³.

$$E_1 = \frac{20 \cdot (700 - 12)}{\sin 65^{\circ}} \cdot 930 \cdot 3,8 = 53655346 \quad \text{T};$$

$$E_2 = \frac{15 \cdot (700 - 12)}{\sin 65^{\circ}} \cdot 930 \cdot 3,8 = 40241509 \quad \text{T};$$

$$B_{oбu} = B_1 + B_2 = 53655346 + 40241509 = 93896855$$
 т.

Запасы, отрабатываемые открытым способом, т:

$$\begin{split} E_{\mathit{omkp}} &= \frac{m_{_{\mathit{H}}}(H_{_{\mathit{Kap}}} - H_{_{\mathit{H}}})}{\sin\alpha} \cdot L_{\mathit{np}} \cdot \gamma_{_{\mathit{p}}} \\ \text{где } H_{\mathit{Kap}} - \text{глубина карьера, м;} \\ E_{\mathit{omkp}} &= \frac{20 \cdot (70 - 12)}{\sin 65^{\circ}} \cdot 930 \cdot 3,8 = 4523270 \ \textit{m} \ ; \\ E_{\mathit{omkp}} &= \frac{15 \cdot (70 - 12)}{\sin 65^{\circ}} \cdot 930 \cdot 3,8 = 3392453 \ \textit{m} \\ \vdots \\ E_{\mathit{obu,omkp}} &= E_{\mathit{omkpl}} + E_{\mathit{omkp2}} = 4523270 \ + 3392453 \ = 7915723 \ \textit{m} \ . \end{split}$$

Запасы, отрабатываемые подземным способом, т:

 $B_{\text{подз}} = B_{\text{общ}} - B_{\text{откр}} = 93896855 - 7915723 = 85981132 \text{ т.}$

1.3 Производственная мощность и срок существования рудника

Для крутопадающих месторождений производственная мощность рудника определяется:

$$A = \frac{1 - \Pi}{1 - R} \cdot S \cdot V \cdot \gamma \cdot K_{y} \cdot K_{M}, m/ \operatorname{sod}$$

где S – средняя площадь горизонтального сечения рудного тела, M^2 ;

 $m_{H1} = m_1 \cdot \sin \alpha$; $m_{H2} = m_2 \cdot \sin \alpha$

$$S_1 = L_{\pi p} \cdot m_{H1} = 930 \cdot 18, 1 = 16833 \text{ m}^2$$

$$S_2 = L_{np} \cdot m_{H2} = 930 \cdot 13, 6 = 12648 \text{ m}^2$$

$$S_{\text{общ}} = S_1 + S_2 = 16833 + 12648 = 29481 \text{ m}^2$$

 γ - объемный вес руды, T/M^3 ;

V – годовое понижение горных работ, м; (табл.4.4);

 $K_{\text{м}}, K_{\text{y}}$ – коэффициенты, учитывающие мощность и угол наклона залежи (табл.4.5).

$$A_{\mathrm{I}} = \frac{1-0.15}{1-0.15} \cdot 16833 \, \cdot 17 \cdot 3.8 \cdot 1.0 \cdot 0.8 = 869929 \, = 870000 \,$$
т/год

$$A_2 = \frac{1 - 0.15}{1 - 0.15} \cdot 12648 \cdot 17 \cdot 3.8 \cdot 1.0 \cdot 0.8 = 653648 = 650000$$
 т/год

Общая производственная мощность рудника:

$$A_{\text{общ}} = A_1 + A_2$$
, т/год

$$A_{\text{обш}} = 870000 + 650000 = 1520000$$
 т/год.

Срок существования рудника:

$$T = (\frac{E_{no\partial 3}((1-\Pi)/(1-R))}{A}) + t_{pas} + t_{зат}$$
 лет,

где $t_{\text{раз}},\,t_{\text{зат}}$ – время на развитие и затухание (по 2-3 года), лет.

Бподз – запасы, отрабатываемые подземным способом ,т

 Π , R - коэффициенты потерь и разубоживания, зависящие от принятой системы разработки (подэтажное обрушение)

$$T = (\frac{85981132 ((1-0,15)/(1-0,15))}{1520000}) + 3 + 2 \approx 61 \text{ год.}$$

Глубина вскрытия месторождения первой ступени:

$$H_1 = A \cdot 25 / (S_{cp} \cdot \gamma) = 1520000 \cdot 25 / 29481 \cdot 3,8 = 340 \text{ M}$$

1.4 Проектные решения по высоте этажа, системе разработки, типу подъемного транспорта, делению горизонтов на основные и вспомогательные

Учитывая характеристики месторождения (мощность, угол падения, ценность, глубина залегания рудного тела) применяю систему разработки подэтажного обрушения. Высоту этажа принимаю $H_3 = 50$ м, выдачу руды в скипах. Принимаю электровоз со сцепным весом 140 кH (КТ-14), вагонетки ёмкостью 4,5 м³, грузоподъёмностью 13,5т (ВГ-4,5A), ширину колеи -750 мм, исходя из производственной мощности рудника.

Подготовку месторождения к очистной выемке произведу с концентрационными горизонтами. Подготовка месторождения к очистной выемке производится полевыми штреками погоризонтно.

На очистной выемке принимаю самоходное оборудование: ПДМ.

Схема вскрытия принимается в зависимости от принятой схемы вентиляции. Критерием при выборе схемы вентиляции является минимизация энергетических затрат, руководствуясь этим, принимаю диагональную схему проветривания для первого и второго варианта, так как шахтное поле имеет длину по простиранию 930 м.

Практическая работа 2. ОБОСНОВАНИЕ ВАРИАНТОВ ВСКРЫТИЯ Выбор вариантов вскрытия месторождения

Схема вскрытия принимается в зависимости от выбранной схемы вентиляции. Критерием при выборе схемы вентиляции является минимизация энергетических затрат, руководствуясь этим выбираю диагональную схему для обоих вариантов.

Тип подъёма руды и подъёмных машин из шахты принимаю согласно эффективному применению рудоподъемных стволов по графику. [4.*c*15]

При годовой производственной мощности рудника 1,52 млн.т/год и глубине залегания рудных тел 700 м, эффективно применить скиповой подъём с применением многоканатной подъемной машины МК-2,25×4.

Околоствольный двор принимаю в зависимости от производительности рудника. Принимаю петлевой околоствольный двор, включающий в себя подземный бункер, насосную станцию, трансформаторную подстанцию, и др.

Объём подземного бункера 200 м³, высота бункера 45 м (табл.5.1).

Водосборник должен состоять из двух выработок и более. Водоприток принимаю: $120 \text{ м}^3/\text{час}$. Тип насоса ЦНС 180-500, напор 500-900 м, 3 насоса, объем камеры 379 м^3 (табл.5.2).

Объём трансформаторной подстанции в свету 640 м³, в проходке 780 м³ (табл.5.3).

При скиповом подъёме и применении систем разработки с массовой отбойкой руды решается вопрос о применении подземного дробильного комплекса. Тип дробилки

принимаю в зависимости от годовой производительности предприятия по рудной массе: конусная 900 (ККД 900/160); расчётный объём дробильного комплекса 4,14 тыс.м3.

2.1 Обоснование типа, числа и назначения вскрывающих выработок и схемы их расположения

Для первого варианта вскрытия принимаю: главный (скипо-клетевой) ствол, вентиляционный ствол, для подачи воздуха, оборудованный подъемом, которые расположены на промышленной площадке и два вспомогательных вентиляционных (для исходящей струи) ствола, оборудованных клетями, расположенные на флангах рудного тела.

Для второго варианта вскрытия принимаю: главный (скипо-клетевой) ствол, вентиляционный ствол, для подачи воздуха, оборудованный подъемом, которые расположены на промышленной площадке и один вспомогательный вентиляционный (для исходящей струи), ствол, оборудованный клетью, расположенный на фланге рудного тела, и наклонный съезд, расположенный на другом фланге рудного тела, служащий для исходящей струи и доставки оборудования и материалов.

Главный откаточный двухпутевой.

Принимаю площади поперечного сечения вскрывающих выработок по формулам [4.c22]:

Примечание: Площадь выработок берётся в свету.

- главный ствол: $S_{c \, \kappa}$ =9+10,8·A=25,2 M^2 S_{cB} = 28,26 M^2 , d_{cB} = 6 M;
- вспомогательный ствол : $S_{\text{вен}} = 14 + 4 \cdot A = 20 \text{ M}^2$ $S_{\text{вен cB}} = 23,746 \text{ M}^2, d_{\text{cB}} = 5,5 \text{ M};$
- фланговый вентиляционный ствол: $S_{\phi,BeH} = 5 + 2,82 \cdot A = 9,23 \text{ м}^2$ $S_{cB} = 9,6 \text{ м}^2, d_{cB} = 3,5 \text{ м};$
- наклонный съезд $S_{\text{нак}} = 15.0 \text{м}^2$
- откаточный квершлаг: $S_{\text{кв}}$ =4,2+5,4·A=12,3м² $S_{\text{кв}}$ = 12,5 м².
- -откаточный штрек : $S_{\text{шт}}$ =8,85 м²
- квершлаг флангового вентиляционного ствола : $S_{\text{кв вен}}$ =2+4,15A=8,225м 2 $S_{\text{кв вен}}$ =8,85 м 2
 - наклонный съезд $S_{\text{нак}} = 15,0 \text{м}^2$

После определения поперечного сечения выработок надо сравнить с типовыми сечениями и принять их за основные значения. Сечения выработок, по которым подаётся воздух, проверяются по допустимой скорости движения воздуха.

Количество воздуха, необходимое для проветривания рудника, при применении оборудования с пневмо- и электроприводом, можно определить:

- по суточной добыче:

$$Q = q_B \cdot T \cdot z$$
, M^3 / MUH ,

где q_B — необходимое количество воздуха на 1 т суточной добычи, м 3 /мин; принимать для шахт не газовых и I категории $q_B = 1,0$ м 3 /мин;

T – суточная добыча шахты (рудника), T; T = A/305 = 4984 T/cyT;

 $z = 1,2 \div 1,5$ — коэффициент запаса воздуха;

$$Q_{\rm B} = q_{\rm BO3} \cdot T \cdot z = 1.4984 \cdot 1,2 = 5980,8 \text{ m}^3/\text{Muh} = 100 \text{ m}^3/\text{c}.$$

Проверка сечения выработок по допустимой скорости воздуха определяется по формуле [1, 23]:

$$V_n = \frac{Q_{\scriptscriptstyle \theta}}{S_{\scriptscriptstyle C\theta} \cdot \varphi} < V_{\scriptscriptstyle ДОП} = 8 \text{ M/c},$$

где V_{π} – скорость движения воздуха по выработки, м/с;

V_{доп} – допустимая скорость движения воздуха по выработке, м/с;

 S_{cB} – площадь поперечного сечения выработки в свету, M^2 ;

 $\phi = 0.8$ – коэффициент уменьшения сечения за счёт армировки (в стволе).

Для первого варианта:

- Вспомогательный ствол:
$$V_{\text{п}} = \frac{100}{23,746 \cdot 0.8} = 5,26 \text{ м/c};$$

- Вентиляционный :
$$V_{_{\Pi}} = \frac{100}{9,6 \cdot 0,8 \cdot 2} = 6,5 \text{ м/c};$$

- Откаточный квершлаг:
$$V_{\rm n} = \frac{100}{12.5 \cdot 2} = 4$$
 м/c;

- Квершлаг флангового вентиляционного ствола:
$$V_{\text{п}} = \frac{100}{8.85 \cdot 2} = 5,65 \text{ м/c};$$

- откаточный штрек:
$$V_{\text{п}} = \frac{100}{8.85 \cdot 2} = 5.65 \text{ м/c};$$

Для второго варианта:

- Вспомогательный ствол:
$$V_{\text{\tiny II}} = \frac{100}{23,746 \cdot 0,8} = 5,26 \text{ M/c};$$

- Вентиляционный:
$$V_{\rm i} = \frac{50}{9.6 \cdot 0.8} = 6.5$$
 м/c;

- Наклонный съезд:
$$V_{\rm i} = \frac{50}{15 \cdot 0.8} = 4.16\,$$
 м/c;

- Откаточный квершлаг:
$$V_{\text{п}} = \frac{100}{12.5 \cdot 2} = 4$$
 м/с;

- Квершлаг флангового вентиляционного ствола:
$$V_{\text{п}} = \frac{100}{8.85 \cdot 2} = 5,65 \text{ м/c};$$

- откаточный штрек:
$$V_{\text{п}} = \frac{100}{8.85 \cdot 2} = 5,65 \text{ м/c};$$

Скорость движения воздуха по выработкам меньше допустимой, следовательно, по условиям вентиляции принятые сечения подходят.

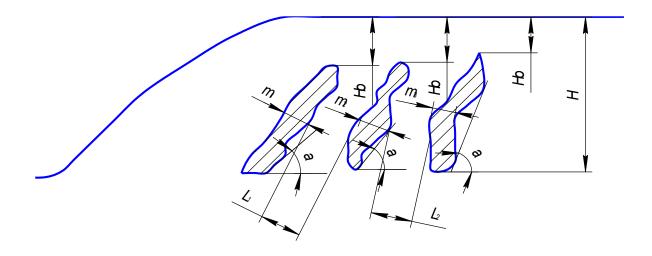
2.2 Расчёт объемов горно-капитальных, строительно-монтажных работ и капитальных затрат по вариантам

Расчёты по определению объёмов горно-капитальных выработок по вариантам представлены в таблице 3.2., 3.3.

Капитальные затраты на проведение вскрывающих и подготовительных выработок, на строительство надшахтных и других технических сооружений на поверхности и связанное с ними оборудование по вариантам приведены в таблице 3.1. [4, maбл.7, 4.c.30]. Ориентировочные стоимости проведения подземных горных выработок, у.е./м³ [4, maбл.7, 5.c.31 - 32]

Таблица 3.1 Объём горно-капитальных выработок по вариантам.

№	Тип выработки	Ппошаль		Длин выраб м	а ботки,	Числ выра	о боток	Объем выработок по вариантам, м ³	
	Варианты	1	2	1	2	1	2	1	2
1	Скипо-клетевой ствол	33,166	33,166	370	370	1	1	12271,4	12271,4
2	Вспомогательный ствол	28,26	28,26	370	370	1	1	10456,2	10456,2


3	Фланговый вентиляционный ствол	12,56	12,56	360	360	2	1	9043,2	4521,6
4	Наклонный съезд	-	16,5	-	1100	-	1	-	18150
ИТ	ОГО			I.	I.		I	31770,8	45399,2
4	Откаточный квершлаг гор. 180	13	13	180	180	1	1	2340	2340
5	Откаточный квершлаг гор. 260	13	13	215	215	1	1	2795	2795
6	Вентиляционный квершлаг гор. 100	8,85	8,85	140	140	1	1	1239	1239
7	Квершлаг флангового вент ствола гор. 100	8,85	8,85	220	220	2	1	3894	1947
8	Квершлаг флангового вент ствола гор. 180	8,85	8,85	220	220	2	1	3894	1947
9	Квершлаг флангового вент ствола гор 260	8,85	8,85	220	220	2	1	3894	1947
ИТ	ОГО							18056	12215
10	Рудоспуск	4	4	150	150	1	1	600	600
11	Околоствольный двор	-	-	-	-	-	-	5150	5150
12	Насосная станция	-	-	-	_	-	-	379	379
13	Подземный бункер	-	-	-	-	-	-	200	200
14	Трансформ. подстанция	-	-	-	-	-	-	780	780
ИТ	ОГО							56935,8	64723,2

Практическая работа 3. КАЛЕНДАРНЫЙ ПЛАН СТРОИТЕЛЬСТВА РУДНИКА

Составлены календарные планы строительства для каждого принятого варианта вскрытия и подготовки месторождения с учётом капитальных и горно-подготовительных выработок.

Принятая последовательность должна обеспечивать вскрытие и подготовку участков месторождения в минимальные сроки. В календарный план строительства включаются только те выработки, которые обеспечивают начало очистных работ (как правило, выработки 2-3 горизонтов).

Приложение 1 Исходные данные по вариантам зданий для выполнения практических работ

No	Н ₀ , м		Н ₀ , м н, м α, градусы				т, м			L _{mp} , M			γ (ρ),	L, M		
	1	2	3	П, М	1	2	3	1	2	3	1	2	3	T/M^3	1	2
1	24	25	29	400	57	66	67	13	14	18	400	300	500	3	40	55
2	30	35	36	600	88	74	57	22	13	17	600	500	300	3,2	45	33
3	43	45	24	550	39	46	55	12	34	32	600	380	480	3,4	34	54
4	44	24	36	700	77	74	89	13	15	19	556	589	780	3,1	36	66
5	43	44	50	674	46	75	23	45	33	12	598	423	234	4,2	34	56
6	55	53	43	790	77	65	48	33	23	21	356	534	345	3,2	56	32
7	55	67	64	800	78	67	87	34	13	27	600	456	234	3,6	52	45
8	24	25	29	458	77	74	89	45	33	12	400	300	500	3,2	34	65
9	30	35	36	537	46	75	23	33	23	21	600	500	300	4,1	23	46
10	43	45	24	673	77	65	48	34	13	27	600	380	480	4	46	78
11	44	24	36	457	46	75	23	13	14	18	400	300	500	4,1	34	56
12	43	44	50	678	77	65	48	22	13	17	600	500	300	3,2	43	56
13	55	53	43	657	39	46	55	45	33	12	467	345	678	3,7	37	76
14	55	53	43	789	77	74	89	13	15	19	456	234	784	3,2	48	65