

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ ТЕПЛОФИЗИКА

Направление подготовки	22.03.02 Металлургия				
Профиль подготовки	Металлургия цветных металлов				
Уровень высшего образования	Прикладной бакалавриат				

Рассмотрено на заседании кафедры Металлургии Одобрено Методическим советом университета 30 июня 2021 г., протокол № 4

Методические рекомендации к организации и выполнению самостоятельной работы составлены в соответствии с рабочей программой дисциплины «Теплофизика».

		Реквизиты приказа Министерства образования и			
Код направления и уровня подготовки	Название направления	науки Российской Федерации об утверждении и вводе в действие ФГОС ВО			
		Дата	Номер приказа		
22.03.02	Металлургия	04.12.2015	1427		

Автор – разработчик	Гольцев В.А., к.т.н., доцент	
/Дата создания/		
Эксперт	Скопов Геннадий Вениаминович,	
	главный специалист Управления	
	стратегического планирования	
	ООО «УГМК-Холдинг», д-р техн.	
	наук	
Заведующий	Мастюгин Сергей Аркадьевич, д-р	
кафедрой	техн. наук, доцент	
«Металлургия»		
/Дата утверждения/		
Продолжительность	108 часов (3 ЗЕ)	
модуля/дисциплины		
Место проведения	Учебные аудитории Технического у	ниверситета УГМК
Цель	После завершения дисциплины, обу	чающиеся будут способны
модуля/дисциплины	применять законы передачи теплоть	и и массы, механики
	жидкостей и газов для осуществлени	ия экспериментального и
	теоретического исследования теплон	вых, газо- и
	гидродинамических процессов в мет	аллургических агрегатах.

Самостоятельная работа обучающихся по дисциплине «Теплофизика» предусмотрена на 2 курсе в 4 семестре в объёме 51 часа (очная форма обучения) и на 2 курсе в 3 и в 4 семестрах в объёме 90 часов (заочная форма обучения).

Самостоятельная работа обучающихся включает изучение теоретического курса и подготовку к зачету. Поэтому настоящие методические рекомендации к организации и выполнению самостоятельной работы относятся к виду учебной работы «Изучение теоретического курса и подготовка к зачету». Данная составляющая самостоятельной работы предусмотрена на 2 курсе в 4 семестре в объёме 60 часов (соответственно 51+9)-очная форма обучения и на 2 курсе в 3 семестре (соответственно 34+0) и в 4 семестре в объёме 60 часов (соответственно 56+4) -заочная форма обучения. Самостоятельная работа обучающихся также включает все виды текущей аттестации.

Тематика самостоятельной работы

Код раздела, темы	Номер занятия	Тема занятия	Время на проведение занятия, час форма обучения		
10,12,1	темы			заочная	
P1	1	Теплогенерация	12	20	
P2	2	Механика жидкостей и газов	12	23	
Р3	3	Стационарная теплопроводность	3	8	
P4	4	Конвективный и сложный теплообмен	3	5	
P5	5	Теплообмен излучением	4	11	
P6	6	Теплопроводность при нестационарном режиме	4	7	
P7	7	Теплопередача	9	11	
P8	8	Массообмен	4	5	
	•		51	90	

Принятые сокращения: ОФО – очная форма обучения; ЗФО – заочная форма обучения.

Тема: Теплогенерация

Задание 1 (пример решения)

Определить режим сжигания мазута, если необходимо получить продукты сгорания при температуре 1649°С. Состав мазута (в массовых процентах): $W^p = 0.6$; $A^c = 0.2$; $C^r = 86.1$; $H^r = 10.7$; $S^r = 2.8$; $(O+N)^r = 0.5$. Сжигание мазута производится при n = 1.25.

Решение: 1. Производим пересчет состава топлива на рабочую массу.

а) По табл. 1.1 определяем значения пересчетных коэффициентов:

с сухой массы на рабочую

$$k_{\text{c-p}} = \frac{100 - W}{100} = \frac{100 - 0.6}{100} = 0.994; \quad A^{\text{p}} = k_{\text{c-p}} A^{\text{c}} = 0.994 \cdot 0.2 = 0.199;$$

с горючей массы на рабочую

$$k_{\text{r-p}} = \frac{100 - (A^{\text{p}} + W)}{100} = \frac{100 - (0,199 + 0,6)}{100} = 0,992.$$

б) Определяем состав рабочей массы:

$$C^{p} = k_{r-p}C^{r} = 0,992 \cdot 86,1 = 85,412;$$

$$H^{\rm p} = k_{\rm r-p} H^{\rm r} = 0,992 \cdot 10,7 = 10,615;$$

$$S^{\rm p} = k_{\rm r,p} S^{\rm r} = 0,992 \cdot 2,8 = 2,778;$$

$$(O+N)^{P} = k_{r-p}(O+N)^{\Gamma} = 0,992 \cdot 0,5 = 0,496;$$

$$O^{p} = \frac{[O]}{[O+N]} (O+N)^{p} = \frac{16}{16+14} 0,496 = 0,265;$$

$$N^{p} = (O+N)^{p} - O^{p} = 0,496-0,265 = 0,231.$$

2. По формуле определяем теоретически необходимый расход воздуха для полного сжигания 1 кг мазута:

$$V_{\rm B}^0 = 0,0889C^{\rm p} + 0,265H^{\rm p} - 0,0333(O^{\rm p} - S^{\rm p}) =$$

=
$$0.0889 \cdot 85.412 + 0.265 \cdot 10.615 - 0.0333(0.265 - 0.278) = 10.49 \,\mathrm{m}^3/\mathrm{kg}$$
.

3. По формуле (1.9) определяем действительный расход воздуха:

$$V_{\rm p}^{\rm m} = nV_{\rm p}^{\rm 0} = 1,25 \cdot 10,49 = 13,11 \text{ m}^3/\text{kg}.$$

4. По формулам определяем теоретический выход продуктов сгорания:

$$V_{RO_2} = 0.0187(C^p + 0.375S^p) = 0.0187(85,412 + 0.375 \cdot 2.778) = 1.617 \text{ m}^3/\text{kg};$$

$$V_{N_2}^0 = 0,79 V_{_{\rm B}}^0 + 0,008 N^{\rm p} = 0,79 \cdot 10,49 + 0,008 \cdot 0,231 = 8,289 \ {\rm m}^3 \big/ {\rm kg};$$

$$V_{N_2}^0 = 0,79V_{_{\rm B}}^0 + 0,008N^{\rm p} = 0,79\cdot 10,49 + 0,008\cdot 0,231 = 8,289~{
m m}^3/{
m kg}$$
 ;

$$V_{H,O}^0 = 0.111H^p + 0.0124W^p + 0.0161V_B^0 =$$

=
$$0.111 \cdot 10.615 + 0.0124 \cdot 0.6 + 0.0161 \cdot 10.49 = 1.354 \text{ m}^3/\text{kg}$$
;

$$V_{\Gamma}^{0} = V_{RO_{2}} + V_{N_{2}}^{0} + V_{H_{2}O}^{0} = 1,617 + 8,289 + 1,354 = 11,26 \text{ m}^{3}/\text{kg}.$$

5. По формуле определяем действительный выход продуктов сгорания:

$$V_{r}^{\mu} = V_{r}^{0} + (n-1)V_{B}^{0} = 11,26 + (1,25-1)\cdot 10,49 = 13,88 \text{ m}^{3}/\text{kg}.$$

6. По формулам определяем состав продуктов сгорания:

$$V_{RO_2}^{\text{A}} = V_{RO_2} = 1,617 \text{ m}^3/\text{k}\text{G};$$

$$V_{N_2}^{\text{A}} = V_{N_2}^0 + 0.79(n-1)V_{\text{B}}^0 = 8.289 + 0.79 \cdot (1.25 - 1) \cdot 10.49 = 10.361 \text{ m}^3/\text{kg};$$

$$V_{H_2O}^{\scriptscriptstyle \Pi} = V_{H_2O}^{\scriptscriptstyle 0} + 0.0161(n-1)V_{\scriptscriptstyle B}^{\scriptscriptstyle 0} = 1.35 + 0.0161 \cdot (1.25 - 1) \cdot 10.49 = 1.392 \text{ m}^3/\text{kg};$$

 $V_{O_3}^{\scriptscriptstyle \Pi} = 0.21(n-1)V_{\scriptscriptstyle B}^{\scriptscriptstyle 0} = 0.21 \cdot (1.25 - 1) \cdot 10.49 = 0.551 \text{ m}^3/\text{kg};$

7. По формуле определяем низшую теплоту сгорания рабочего топлива:

$$Q_{\rm H}^{\rm p} = 338C^{\rm p} + 1025H^{\rm p} - 108, 5(O^{\rm p} - S^{\rm p}) - 25W =$$

$$=338\cdot85,413+1025\cdot10,615-108,5\cdot(0,265-2,778)-25\cdot0,6=40007,$$
 кДж/кг.

8. По формуле определяем удельную энтальпию продуктов сгорания при заданных условиях сжигания топлива и отсутствии предварительного подогрева топлива и воздуха (при $i_{\rm T}=i_{\rm B}=0$):

$$V_{r,0}^{p} = \frac{Q_{\scriptscriptstyle
m H}^{
m p}}{V_{\scriptscriptstyle
m r}^{\scriptscriptstyle
m d}} = \frac{40007}{13,88} = 2882 \ {
m кДж/м}^3 \, .$$

9. По формуле определяем калориметрическую температуру горения, соответствующую заданной по условию действительной температуре горения:

$$T_{\kappa} = \frac{T_{\pi}}{\eta} = \frac{1649}{0.8} = 2061^{\circ} C.$$

10. По таблице определяем удельную энтальпию компонентов продуктов сгорания при калориметрической температуре:

 $i_{RO_2}\left(T_{\kappa}\right)$ = 5080 кДж/м³; $i_{N_2}\left(T_{\kappa}\right)$ = 3069 кДж/м³; $i_{H_2O}\left(T_{\kappa}\right)$ = 4032 кДж/м³; $i_{O_2}\left(T_{\kappa}\right)$ = 3248 кДж/м³, а по формуле (1.24) — удельную энтальпию продуктов сгорания расчетного состава при калориметрической температуре:

$$i_{\mathsf{r},0}\left(T_{\mathsf{k}}\right) = \sum_{\mathsf{k}} V_{\mathsf{k}} i_{\mathsf{k}}\left(T_{\mathsf{k}}\right) = \frac{1,617}{13,88} \cdot 5080 + \frac{10,361}{13,88} \cdot 3069 + \frac{1,392}{13,88} \cdot 4032 + \frac{0,551}{13,88} \cdot 3248 = 3416 \text{ кДж/м}^3.$$

12. Выбираем режим сжигания топлива.

Расчетом установлено, что обеспечить заданную температуру продуктов сгорания можно только при условии ввода в зону горения дополнительного количества тепла $\Delta Q = V_{_{\Gamma}}^{_{\Pi}} \left[i_{_{0,\Gamma}} \left(T_{_{K}} \right) - i_{_{0,\Gamma}}^{0} \right] = V_{_{\Gamma}}^{_{\Pi}} i_{_{0,\Gamma}} \left(T_{_{K}} \right) - Q_{_{H}}^{_{P}} = 3416 \cdot 13,88 - 40007 = 7407 \text{ кДж/м}^3.$

Принимаем решение о вводе в зону горения необходимого количества тепла путем подогрева воздуха до температуры $T_{\rm B}$, при которой удельная энтальпия воздуха

$$i_{_{\mathrm{B}}} = \frac{\Delta Q}{V_{_{\mathrm{B}}}^{7}} = \frac{7407}{13,11} = 565 \ \mathrm{кДж/м}^{3}.$$

По таблице Приложения 8 находим температуру воздуха, соответствующую этому значению:

$$T_{\rm B} = 422^{\rm 0} C.$$

Ответ. Для достижения заданной температуры продуктов сгорания сжигание мазута необходимо производить в воздухе, подогретом до температуры 422° C. Так как при использовании форсунок низкого давления уровень подогрева воздуха ограничен температурой ~ 300° C, рекомендуется рассмотреть возможность применения форсунки высокого давления.

Задание 2 (пример решения)

Для смешанного коксодоменного газа с теплотой сгорания

 $Q_{\rm H,cm}^{\rm p}=6700~{\rm кДж/m^3}$ определить режим сжигания при температуре подогрева газа $T_{\rm r}=200^{\rm o}{\rm C}$, воздуха $T_{\rm B}=400^{\rm o}{\rm C}$ и температуре продуктов сгорания в зоне горения $1300^{\rm o}{\rm C}$. Сухие газы, составляющие смешанный коксодоменного газ, имеют следующие составы (в объемных процентах):

– доменный: $10,7CO_2$; 28,5CO; $2,5H_2$; $58,2N_2$; $0,1CH_4$; влажность $W_{\text{дом}} = 30 \text{ г/м}^3$;

— коксовый: $2,35CO_2$; 7,44CO; $56,42H_2$; $3,97N_2$; $26,05CH_4$; $3,14C_2H_4$; $0,63O_2$; влажность $W_{\text{кокс}} = 25 \text{ г/м}^3$.

Решение.

1. По формуле определяем составы влажных газов:

$$X_{\scriptscriptstyle \rm ДOM}^{\scriptscriptstyle \rm BJ} = \frac{100}{100 + 0,1242 W_{\scriptscriptstyle \rm ДOM}} = X_{\scriptscriptstyle \rm ДOM}^{\rm c} \, \frac{100}{100 + 0,1242 \cdot 30} = 0,964 X_{\scriptscriptstyle \rm ДOM}^{\rm c},$$

$$X_{\text{kokc}}^{\text{BJ}} = \frac{100}{100 + 0,1242W_{\text{kokc}}} = X_{\text{kokc}}^{\text{c}} \frac{100}{100 + 0,1242 \cdot 25} = 0,970X_{\text{kokc}}^{\text{c}},$$

получим (в объемных процентах)

- для доменного газа: $10,31CO_2$; 27,48CO; $2,41H_2$; $56,10N_2$; $0,096CH_4$; $3,60H_2O$;
- для коксового газа: $2,28CO_2$; 7,21CO; $54,72H_2$; $3,85N_2$; $25,27CH_4$; $3,04C_2H_4$; $0,61O_2$; $3,02H_2O$.
 - 2. По формуле определяем теплоту сгорания каждого из газов:
 - доменного:

$$Q_{\text{н.лом}}^{\text{p}} = 108H_2 + 126CO + 358CH_4 = 108 \cdot 2,41 + 126 \cdot 27,48 + 358 \cdot 0,096 = 3726 \text{ кДж/м}^3.$$

- коксового:

$$Q_{H}^{P} = 108H_{2} + 126CO + 358CH_{4} + 591C_{2}H_{4} =$$

$$=108.54,72+126.7,21+358.25,27+591.3,04=17671 \text{ кДж/м}^3.$$

3. По формуле определяем долю доменного газа в смешанном газе

$$x = \frac{17662 - 6700}{17662 - 3726} = 0,787$$

4. По формуле

$$X_{\rm cm} = 0,787X_{\rm dom} + 0,213X_{\rm kokc}$$

определяем состав смешанного газа (в объемных процентах): $8,60CO_2$; 23,16CO; $13,55H_2$; $44,97N_2$; $5,46CH_4$; $0,65C_2H_4$; $0,13O_2$; $3,48H_2O$.

5. По формуле определяем теоретически необходимый расход воздуха для сжигания 1 м^3 смешанного газа

$$V_{\rm B}^0 = 0.0476 (0.5CO + 0.5H_2 + 2CH_4 + 2C_2H_4 - O_2) =$$

= 0.0476 (0.5 \cdot 23.16 + 0.5 \cdot 13.55 + 2 \cdot 5.46 + 3 \cdot 0.65 - 0.12) = 1.48 \cdot M^3/M^3.

6. По формулам определяем состав продуктов сгорания при n=1

$$V_{RO_2} = 0.01 \left(CO_2 + CO + CH_4 + 2C_2H_4 \right) = 0.01 \left(8,60 + 23,16 + 5,46 + 2 \cdot 0,65 \right) = 0.385 \, \text{m}^3 / \text{m}^3 \, ;$$

$$V_{N_2}^0 = 0,79V_{\text{\tiny B}}^0 + 0,01N_2 = 0,79 \cdot 1,48 + 0,01 \cdot 44,97 \,\text{m}^3/\text{m}^3;$$

$$V_{H_2O}^0 = 0,01 \big(H_2 + 2CH_4 + 2C_2H_4 + 0,0124W \big) + 0,0161 V_{\scriptscriptstyle \rm B}^0 =$$

$$= 0,01 (13,55 + 2 \cdot 5,46 + 2 \cdot 0,65 + 0,0124 \cdot 3,48) + 0,0161 \cdot 1,48 = 0,282 \,\mathrm{m}^3/\mathrm{m}^3 \,.$$

7. По формуле определяем объем продуктов сгорания

$$V_{r}^{0} = V_{RO_{2}} + V_{N_{2}}^{0} + V_{H_{2}O}^{0} = 0,385 + 0,619 + 0,282 = 2,286 \,\mathrm{m}^{3}/\mathrm{m}^{3}$$
.

8. По формуле с помощью графиков определяем удельную энтальпию продуктов сгорания при заданных условиях сжигания топлива и коэффициенте расхода воздуха n=1 $\left(V_{_{\rm B}}=V_{_{\rm B}}^{^0},\ V_{_{\rm T}}=V_{_{\rm T}}^{^0}\right)$

$$\ell_{\mathrm{r},0}^{\prime} = \frac{Q_{\scriptscriptstyle \mathrm{H}}^{\scriptscriptstyle \mathrm{p}} + i_{\scriptscriptstyle \mathrm{T}} + V_{\scriptscriptstyle \mathrm{B}}^{\scriptscriptstyle \mathrm{A}} i_{\scriptscriptstyle \mathrm{B}}}{V_{\scriptscriptstyle \mathrm{r}}} = \frac{6700 + 266 + 1,48 \cdot 532}{2,286} = 3392 \ \mathrm{кДж/м}^3;$$

здесь

$$\begin{split} i_{_{\mathrm{T}}} &= 0,232i_{_{CO}} + 0,086i_{_{CO_2}} + 0,136i_{_{H_2}} + 0,449i_{_{N_2}} + 0,055i_{_{CH_4}} + 0,006i_{_{C_2H_4}} + 0,001i_{_{O_2}} + 0,035i_{_{H_2O}} = \\ &= 0,232\cdot261 + 0,086\cdot362 + 0,136\cdot259 + 0,449\cdot261 + 0,055\cdot352 + 0,006\cdot456 + 0,001\cdot267 + \\ &+ 0,035\cdot303 = 266 \text{ k/J}\text{m/m}^3 \end{split}$$

- удельная энтальпия топлива расчетного состава при $T_{\rm F} = 200$ °C; $i_{\rm B} = 532$ кДж/м³ удельная энтальпия воздуха при $T_{\rm B} = 400$ °C.
- 9. По формуле определяем калориметрическую температуру, соответствующую действительной температуре в зоне горения $T_{\rm d}=1300^{\rm o}{\rm C}$:

$$T_{\rm K} = \frac{T_{\rm A}}{\eta} = \frac{1300}{0.8} = 1625^{\circ} \rm C.$$

10. По формуле с помощью приложения определяем удельную энтальпию продуктов сгорания при калориметрической температуре:

$$i_{r,0}(T_{\kappa}) = \sum_{k} V_{k} i_{k}(T_{\kappa}) = \frac{V_{RO_{2}}}{V_{r}^{0}} i_{RO_{2}}(T_{\kappa}) + \frac{V_{N_{2}}}{V_{r}^{0}} i_{N_{2}}(T_{\kappa}) + \frac{V_{H_{2}O}}{V_{r}^{0}} i_{H_{2}O}(T_{\kappa}) =$$

$$= \frac{0,385}{2,286} \cdot 3884 + \frac{1,619}{2,286} \cdot 2368 + \frac{0,282}{2,286} \cdot 3035 = 2706 \text{ кДж/м}^{3}.$$

11. Выбираем режим сжигания топлива.

Расчетом установлено, что при заданном уровне подогрева топлива и воздуха и n=1 температура продуктов сгорания в зоне горения окажется существенно выше заданной. Для того чтобы снизить эту температуру, как следует из (1.22), необходимо увеличить удельный объем продуктов сгорания, образующихся в зоне горения. Этого можно добиться двумя способами: либо организовать рециркуляцию низкотемпературных продуктов сгорания, возвращая их из газохода обратно в зону горения, либо — что значительно проще, но менее экономично — увеличить коэффициент расхода воздуха. На практике чаще используют второй способ, оставляя расход воздуха постоянным и сокращая расход топлива.

Необходимое значение коэффициента расхода воздуха определим, исходя из формулы (1.22)

$$i_{r,0}(T_{\kappa}) = \frac{Q_{\rm H}^{\rm p} + i_{\rm T} + nV_{\rm B}^{0}i_{\rm B}}{V_{\rm r}^{0} + (n-1)V_{\rm B}^{0}},$$

откуда

$$n = \frac{Q_{\rm H}^{\rm p} + i_{\rm r} + i_{\rm r,0} \left(T_{\rm K}\right) \! \left(V_{\rm r}^0 - V_{\rm B}^0\right)}{V_{\rm B}^0 \! \left\lceil i_{\rm r,0} \left(T_{\rm K}\right) \! - i_{\rm B} \right\rceil} = \frac{6700 + 266 + 2706 \cdot \left(1,48 - 2,286\right)}{1,48 \cdot \left(2706 - 532\right)} = 1,49.$$

Ответ. Для получения продуктов сгорания с температурой 1300° С при сжигании смешанного газа заданного состава и подогреве газа до 200° С и воздуха до 400° С необходимо поддерживать коэффициент расхода воздуха равным 1,49.

Задания для самостоятельного решения

- 1.Определить теоретический и действительный объемы воздуха, необходимые для сжигания 2000 кг кузнецкого угля марки Д, если известен состав его горючей массы: C^r =78,5%; H^r = 5,6%, $S \setminus = 0.4\%$; N^2 = 2,5%; O^r == 13,0%; зольность сухой массы A^c = 15,0% и влажность рабочая W^p = 12,0%. Коэффициент расхода воздуха 1,3. 2.В печи сжигается 60 м³/мин природного газа Угерского месторождения состава: $C_0 = 0.2\%$; $C_1 H_1 = 0.2\%$; $C_2 H_3 = 0.1\%$; $N_1 = 1.0\%$. Оправления объемь
- 2.В печи сжигается 60 м²/мин природного газа утерского месторождения состава: $C0_2=0,2\%$; $CH_4=98,5\%$; $C_2H_4=0,2\%$; $C_3H_8=0,1\%$; $N_2=1,0\%$. Определить объем продуктов сгорания при коэффициенте расхода воздуха 1,15.
- 3.В печи сжигается $2 \cdot 10^3$ кг/ч малосернистого мазута состава $C^p = 84,65\%$; $H^p = 11,7\%$;

- $S^p_t = 0.3\%$; О = 0.3%; А = 0.05%; W = 3.0%. Определить, на сколько был увеличен объем подаваемого в печь воздуха, если известно, что при полном сгорании топлива содержание $R0_2$ в дымовых газах снизилось с 15 до 12%.
- 4.Определить максимальное содержание трехатомных газов в продуктах полного сгорания 1 кг донецкого угля марки А состава:
- $C^p = 63.8 \%$; $H^p = 1.2 \%$; S J = 1.7 %; $N^p = 0.6\%$; $O^p = 1.3 \%$; $A^p = 22.9 \%$; $W^p = 8.5 \%$.
- 5.Определить массу продуктов сгорания, получаемых при полном сгорании 1 м³ природного газа Ставропольского месторождения состава: $C0_2 = 0.2$ %; $C1_4 = 98.2$ %; $C2_{16} = 0.4$ %; $C3_{18} = 0.1$ %; $C4_{10} = 0.1$ %; $C1_{10} = 0.1$ %
- 6.Определить теоретический объем продуктов сгорания и количество воздуха, теоретически необходимого для сжигания смеси двух углей, а также теплоту сгорания смеси, если в ее составе 60 % первого угля и 40% второго. Составы исходных топлив выбрать самостоятельно.

Тема: Механика жидкостей и газов

Задание 1 (пример решения)

Определить необходимую высоту дымовой трубы для печей термических цехов , если труба должна создавать разрежение 30 мм.в.ст. при средней температуре дымовых газов $T_{\partial} = 400$ °C и температуре окружающего воздуха 30°C. Плотности дымовых газов и

воздуха при нормальных условиях принять равными, соответственно, $\rho_{\delta}^{0} = 1,27 \frac{\kappa z}{M^{3}}$ и

$$\rho_{\scriptscriptstyle 6}^{\scriptscriptstyle 0}=1{,}29\frac{\kappa z}{{\scriptstyle M}^{\scriptscriptstyle 3}}$$

Решение:

1.Плотность воздуха при 30°C

$$\rho_e = \rho_e^0 \cdot \frac{T_0}{T} \cdot \frac{P}{P_0} = 1,29 \cdot \frac{273}{273 + 30} = 1,162 \frac{\kappa z}{M^3}$$

2.Плотность дыма при 400°C

$$\rho_{\delta} = \rho_{\delta}^{0} \cdot \frac{T_{0}}{T} \cdot \frac{P}{P_{0}} = 1,27 \cdot \frac{273}{273 + 400} = 0,515 \frac{\kappa z}{M^{3}}$$

3. Разрежение, создаваемое трубой, равно разности давлений воздуха и дымовых газов у основания трубы

$$\Delta p = p_{\scriptscriptstyle \theta} - p_{\scriptscriptstyle \partial} = (p_{\scriptscriptstyle 0} + \rho_{\scriptscriptstyle \theta} gh) - (p_{\scriptscriptstyle 0} + \rho_{\scriptscriptstyle \partial} gh) = (\rho_{\scriptscriptstyle \theta} - \rho_{\scriptscriptstyle \partial})gh, \text{ откуда}$$

$$h = \frac{\Delta p}{(\rho_s - \rho_{\dot{o}})g} = \frac{30 \cdot 9.81}{(1.162 - 0.515) \cdot 9.81} = 47.32M$$

Задание 2 (пример решения)

Рекуператор изготовлен из стальных труб диаметром 76×3 мм. По трубам проходит газ под атмосферным давлением. Требуется найти необходимый диаметр труб при работе с тем же газом, но под давлением $p_2 = 5$ ати, если скорость газа и его массовый расход сохраняются прежними.

Решение:

1. Плотность газа при $p_2 = 5$ ати

$$\rho_2 = \rho_0 \cdot \frac{p_2}{p_0} \cdot \frac{T_0}{T_2} = \rho_0 \cdot \frac{5+1}{1} \cdot \frac{1}{1} = 6\rho_0$$

2.По условию, массовый расход газа сохраняется неизменным

$$\dot{M}_{1} = \dot{M}_{2} \Leftrightarrow \rho_{1} \cdot \dot{V}_{1} = \rho_{2} \cdot \dot{V}_{2} \Leftrightarrow \rho_{1} \cdot u_{1} \cdot S_{1} = \rho_{2} \cdot u_{2} \cdot S_{2} \cdot \text{T.K.} \quad \overline{u}_{1} = \overline{u}_{2} = \overline{u}_{1} \cdot \text{To}$$

$$S_2 = S_1 \cdot \frac{\rho_1}{\rho_2}$$
 . Поскольку $S_2 / S_1 = \frac{d_2^2}{d_1^2}$, то $d_2 = d_1 \cdot \sqrt{\frac{\rho_1}{\rho_2}}$. Т.к. $d_I = 0.076 \text{м} - 0.006 \text{m} = 0.07 \text{м}$,

a $\rho_1 = \rho_0$, to $d_2 = 0.07 / \sqrt{6} = 0.0286$ m. Other: $d_2 = 29$ mm.

Задание 3 (пример решения)

По трубам одноходового рекуператора (число труб 121, размер трубок 38×2мм) проходит воздух при постоянной температуре 50°С и давлении р=2ати со скоростью 9м/с. Барометрическое давление 740мм.рт.ст. Определить: а) Массовый расход воздуха б) Объемный расход воздуха при нормальных условиях; в) Объемный расход воздуха при рабочих условиях.

Плотность воздуха при нормальных условиях ρ_0 =1,293 кг/м³.

Абсолютное давление в теплообменнике $p = p_{\text{бар}} + p_{\text{изб}} = 740 \cdot 133,3 + 2 \cdot 98100 = 295926$ Па Плотность воздуха при рабочих условиях

$$\rho = \rho_0 \cdot \frac{p}{p_0} \cdot \frac{T_0}{T} = 1,293 \cdot \frac{295926}{98642} \cdot \frac{273}{273 + 50} = 3,28 \frac{\kappa z}{M^3}$$

Массовый расход воздуха

$$\dot{M} = \dot{V} \cdot \rho = \bar{u} \cdot S \cdot \rho = \bar{u} \cdot n \cdot \frac{\pi d^2}{4} \cdot \rho = 9 \cdot 121 \cdot 0,785 \cdot 0,034^2 \cdot 3,28 = 3,24 \frac{\kappa z}{c}$$

где d=38-2·2=34мм.

Решение

Объемный расход воздуха при нормальных условиях

$$\dot{V}_0 = \frac{\dot{M}}{\rho_0} = \frac{3,24}{1,293} = 2,51 \frac{M^3}{c}$$

в)Объемный расход воздуха при рабочих условиях.

$$\dot{V} = \frac{\dot{M}}{\rho} = \frac{3,24}{3,28} = 0.99 \frac{M^3}{c}$$

. **Otbet:**
$$\dot{M} = 3.24 \frac{\kappa c}{c}$$
; $\dot{V}_0 = 2.51 \frac{M^3}{c}$; $\dot{V} = 0.99 \frac{M^3}{c}$

Задания для самостоятельного решения

- 1. Барометр, установленный на 1 этаже, показывает давление 738мм.рт.ст. Каковы будут показания барометра после его переноса на 9 этаж, если высота каждого этажа 4,5м, а температура воздуха 20°C. Ответ: 735 мм.рт.ст.
- 2. Заполненная керосином бочка поднимается на вертикальном грузовом подъемнике с ускорением 2 м/с². Определить давление, создаваемое жидкостью на уровне дна бочки, расположенного на глубине h=800 мм от свободной поверхности, если плотность керосина ρ =760 κ z/ M^3 . Ответ:7174 Па.
- 3.Определить абсолютное давление воды в точке, находящейся на глубине 6м от свободной поверхности, при барометрическом давлении 750мм.рт.ст..Ответ получить в ата. **Ответ:**p=1,63ата.
- 4.Теплообменник состоит из 19 труб диаметром 20×2мм. В трубках течет вода, поступающая по трубопроводу 57×3,5мм. Скорость воды в подводящем трубопроводе 1,4м/с. Определить скорость воды в трубах теплообменника. . Ответ: w=0,72 м/с.
- 5.По теплообменнику, состоящему из n=379 трубок \emptyset =16 мм × 1,5мм, включенных параллельно, проходит азот в количестве V_0 =6400 нм³/ч под давлением p=3ати. Азот входит в теплообменник при 120 °C, выходит при 30 °C. Определить скорость азота в трубках теплообменника на входе и выходе. **Ответ:** $w_{\text{вх}}$ =13,1м/c; $w_{\text{вых}}$ =10,1м/c.

6.Теплообменник состоит из двух концентрических труб диаметрами \varnothing =29 мм × 2,5мм и \varnothing =54 мм × 2,5мм. По внутренней трубе протекает 3,73 т/ч жидкости плотностью 1150 $\kappa \varepsilon/m^3$. В межтрубном пространстве проходит 160 кг/ч газа под давлением p=3ата при средней температуре 0°С. Плотность газа при 0°С и p=1ата равна 1,2 $\kappa \varepsilon/m^3$. Найти скорость газа и жидкости в теплообменнике. **Ответ:** $w_{\rm m}$ =2,0м/с; $w_{\rm r}$ =10,4м/с. 7.В вертикальном цилиндрическом резервуаре диаметром d= 4 м хранится 100т мазута,

7.В вертикальном цилиндрическом резервуаре диаметром d=4 м хранится тоот мазута, плотность которого $\rho=950$ кг/м³ при 0 °C. Определить повышение уровня мазута в резервуаре при повышении температуры мазута до 30 °C. Расширение резервуара не учитывать. Коэффициент температурного расширения мазута принять равным 0,00072 град⁻¹. Ответ: h=0,202 м.

8.В отопительный котел поступает 50 м 3 /ч воды при 70 °С. Сколько кубометров воды будет выходить из котла, если нагрев воды производится до 90 °С, а термический коэффициент объемного расширения воды составляет $\beta_{\tau} = 0,00064$ град $^{-1}$ (приложение 18). Ответ: $V = 50,64 \text{ м}^3/\text{ч}$.

9.Компрессор сжимает атмосферный воздух (p =1,013·10 5 Па) до абсолютного давления 6,08·10 5 Па. Определить, во сколько раз уменьшается объем воздуха, если в процессе сжатия происходит повышение температуры от 20 до 78 °C. **Ответ:** в 5 раз.

10.Сжатый воздух, выходящий с компрессорной станции, имеет давление $8,08 \cdot 10^5$ Па и температуру 130 °C, а поступает в кузнечный цех при давлении $7,07 \cdot 10^5$ Па и температуре 50 °C. Как изменится скорость воздуха в воздухопроводе, имеющем постоянный диаметр? **Ответ:** уменьшится на 8,4 %.

11. Дымовые газы, входящие в дымоход из нагревательной печи, имеют температуру 900 °C. В результате охлаждения в рекуператоре и по длине дымохода температура газов у выхода в дымовую трубу равна 500 °C. Определить плотность газов в начале и в конце дымохода, принимая давление постоянным и считая плотность газов при 0 °C равной p_0 = 1,27 кг/м³. Ответ: $\rho_{\text{нач}} = 0,0304$ кг/м³; $\rho_{\text{кон}} = 0,0460$ кг/м³.

12. Два двигателя турбовоздуходувок работают на доменном газе. Один из них расходует на 1 л.с. $2,98 \text{ m}^3/\text{ч}$ газа при 27 °C и абсолютном давлении $9,3 \cdot 10^4 \text{ Па}$, а другой $2,73 \text{ m}^3$ при 17 °C и абсолютном давлении $9,9 \cdot 10^4 \text{ Па}$. Какой из двигателей работает экономичнее? **Ответ:** оба двигателя работают одинаково экономично.

Задание 4 (пример решения)

На трубопроводе с внутренним диаметром d_1 =200мм имеется плавный переход на участок с d_2 =100мм. По трубопроводу подается 1700 нм3/ч метана при 30°С. Открытый в атмосферу U-образный водяной манометр, установленный на широкой части трубопровода перед сужением, показывает $p_1^{u^{3\delta}}$ = 40мм.в.ст. Каким будет показание манометра на узком участке трубопровода? Атмосферное давление принять равным 760мм.рт.ст.

Решение.

1. Считая плотность метана постоянной и пренебрегая потерями на трение на участке I–II ввиду его малости (L \rightarrow 0), запишем уравнение Бернулли для участка I–II при h_1 = h_2

$$\begin{split} p_1^{_{u3\delta}} + & \frac{\rho u_1^{^2}}{2} = p_2^{_{u3\delta}} + \frac{\rho u_2^{^2}}{2}, \text{ откуда} \\ p_1^{_{u3\delta}} - p_2^{_{u3\delta}} = \rho \cdot \frac{u_2^{^2} - u_1^{^2}}{2} \,. \end{split}$$

2.Определяем u_1 и u_2 , предполагая, что влиянием изменения давления на плотность метана на участке I–II можно пренебречь

$$u_1 = \frac{V_{CH_4}}{t \cdot S} \cdot \frac{T}{T_0} = \frac{V_{CH_4}}{t \cdot \frac{\pi d^2}{4}} \cdot \frac{T}{T_0} = \frac{1700}{3600 \cdot 0,785 \cdot 0,2^2} \cdot \frac{303}{273} = 16,7 \frac{M}{c}.$$

$$\rho = \frac{M}{22.4} \cdot \frac{T_0}{T} = \frac{16 \cdot 273}{22.4 \cdot 303} = 0,645 \frac{\kappa z}{M^3}$$

4.Перепад давления на участке сужения (I–II)

$$p_1^{u_3\delta} - p_2^{u_3\delta} = \rho \cdot \frac{u_2^2 - u_1^2}{2} = 0.645 \cdot \frac{(66.8^2 - 16.7^2)}{2} = 1354 \Pi a \approx 135.4 \text{ мм.в.ст.}$$

5.Избыточное давление во втором сечении $p_2 = p_1 - 135, 4 = 40 - 135, 4 = -95, 4$ мм.в.ст.,

т.е. манометрическое давление в сечении II покажет вакуум, равный 95,4мм.в.ст.

Задания для самостоятельного решения

- **1.**Определить потери давления на трение при течении воды по латунной трубе диаметром 19×2мм и длиной 10м. Скорость воды 2 м/с, температура воды 55°С. **Ответ:** 2,88·10⁴Па.
- **2.**По водопроводной трубе проходит $10 \text{ м}^3/\text{ч}$ воды. Сколько воды в час пропустит труба удвоенного диаметра при тех же потерях напора на трение? . **Ответ:** $56,5 \text{ м}^3/\text{ч}$.
- **3.**Найти диаметр трубопровода для перекачки водорода при массовом расходе его 120 кг/ч. Длина трубопровода равна 1000м. Допустимое падение давления составляет Δp =14663 Πa . Плотность водорода 0,0825кг/м³; коэффициент трения равен λ =0,03. . **Ответ:** d=0,2м.
- **4.**По трубопроводу с внутренним диаметром 100 мм подают диоксид углерода под давлением $2 \cdot 10^5 \Pi a$ (по манометру) при средней температуре 75°С. Плотность потока массы равна 30 кг/(м $^2 \cdot c$).. Шероховатость стенки трубы равна Δ =0,7мм. Определить гидравлическое сопротивление горизонтального трубопровода при его длине 90м и при наличии четырех поворотов под углом 90° и одной задвижки. **Ответ:** Δp =3360 Πa .
- 5.По стальному трубопроводу с внутренним диаметром 75 мм перекачивается 25 м3/ч жидкости плотностью 1200 кг/м3 с динамическим коэффициентом вязкости 1, $7 \cdot 10^{-3}$ Па·с. Конечная точка трубопровода выше начальной на 24 м. Длина трубопровода 112м. На нем установлены 2 прямоточных вентиля и 5 прямоугольных отводов с радиусом изгиба 300мм. Трубы имеют незначительную коррозию. Найти потребляемую мощность, если общий КПД насосной установки 0,6. . **Ответ:** 4,0кВт.
- **6.**По стальному трубопроводу внутренним диаметром 200мм, длиной 1000 м передается водород в количестве 120 кг/ч. Среднее давление в сети $2 \cdot 10^5 \Pi a$. Температура газа 27 °C. Определить потери давления на трение. **Ответ**: 520 Па.
- 7.Найти потери давления на трение для пара в стальном паропроводе длиной 5 м, диаметром 108×4 мм. Давление пара $P_{a6C}=5.9\cdot10^5$ Па, скорость пара 25 м/с. Ответ: $1.15\cdot10^4$ Па.
- **8.**По водопроводной трубе проходит 10 м^3 /ч воды. Сколько воды в 1 ч пропустит труба удвоенного диаметра при тех же потерях напора на трение? **Ответ**: 56.5 м^3 /ч.
- **9.**По прямому горизонтальному трубопроводу длиной 150 м необходимо подавать 10 м³/ч жидкости. Допускаемые потери напора 10 м. Определить требуемый диаметр трубопровода, принимая коэффициент трения = 0,63. **Ответ**: 50 мм.
- **10.**Как изменятся потери давления на трение, если при неизменном расходе жидкости уменьшить диаметр трубопровода вдвое? Задачу решить в двух вариантах: а) считая, что оба режима (старый и новый) находятся в области ламинарного течения; б) считая, что оба режима находятся в турбулентной области. **Ответ:** а) увеличится в 16 раз; б) увеличится в 32 раза.
- **11.**Найти диаметр трубопровода для перекачки водорода при массовом расходе его 120 кг/ч. Длина трубопровода 1000 м. Допускаемое падение давления ρ =14663 Па. Плотность водорода 0,0825 кг/м³ . Коэффициент трения = 0,03. **Ответ:** d = 0,2 м.

12.По трубопроводу с внутренним диаметром 100 мм подают диоксид углерода под давлением $2 \cdot 10^5$ Па (по манометру) при средней температуре 75 °C. Плотность потока массы равна 30 кг/(м $^2 \cdot$ с). Шероховатость трубы $\Delta = 0.7$ мм. Определить гидравлическое сопротивление горизонтального трубопровода при длине его 90 м и при наличии четырех поворотов под углом 90 ° и задвижки.

Ответ: $\Delta p = 3360 \text{ Па.}$

Тема: Стационарная теплопроводность

Задание 1 (пример решения)

Определить потери тепла через 1м² плоской однородной стенки, если на ее границах установившиеся температуры составляют T₁=800°C и T₂=80°C. Стенка имеет толщину 500мм, выложена из легковесного шамотного кирпича, имеющего коэффициент теплопроводности $\lambda = 0.5 + 16 \cdot 10^{-5} \cdot T$ Bт/(м·К).

Решение

1. Средняя температура стенки

$$\overline{T} = \frac{T_1 + T_2}{2} = \frac{800 + 80}{2} = 440^{\circ} C$$

2. Среднее значение коэффициента теплопроводности

$$\lambda = 0.5 + 0.00016.440 = 0.5 + 0.07 = 0.57 BT/(M \cdot K)$$
.

3. Искомое значение плотности теплового потока

$$q = \frac{\lambda}{\delta} (T_1 - T_2) = \frac{0.57}{0.5} (800 - 80) = 820 \frac{Bm}{M^2}$$

Задание 2 (пример решения)

Определить плотность теплового потока через четырехслойную стенку при следующих исходных данных:

 $T_1=1000$ °C; $T_5=50$ °C.

№	Толщина, δ	К-т теплопроводности λ, Вт/(м·К)
	MM	
1	115	$0,755 + 58 \cdot 10^{-5} \cdot \overline{T}_{12}$
2	230	$0.5 + 16 \cdot 10^{-5} \cdot \overline{T}_{23}$
3	115	$0.314 + 35 \cdot 10^{-5} \cdot \overline{T}_{34}$
4	90	$0,255 + 26 \cdot 10^{-5} \cdot \overline{T}_{45}$

Решение

- 1.Определяем полный перепад температур по стенке $\Delta T = T_1 T_5 = 1000 50 = 950$ °C.
- 2.Тепловое сопротивление стенки в «холодном» состоянии

$$R'_{\scriptscriptstyle BH} = \sum_{i=1}^{4} \left(R'_{\scriptscriptstyle BH} \right)_{i} = \sum_{i=1}^{4} \frac{\delta_{i}}{\lambda'_{i}} = \frac{0,115}{0,755} + \frac{0,23}{0,5} + \frac{0,115}{0,314} + \frac{0,09}{0,255} = 0,152 + 0,46 + 0,366 + 0,353 = 1,331 \frac{M^{2}K}{Bm}$$

3.Т.к. при стационарном режиме теплопроводности через плоскую стенку плотность теплового потока есть величина постоянная

$$q_1 = q_2 = q_3 = q_4 \equiv q \equiv const.$$
, T.e.

температур на каждом слое стенке

$$\Delta T_1' = \Delta T \cdot \frac{\left(R_{_{e_H}}'\right)_1}{R_{_{e_H}}'} = 950 \cdot \frac{0.152}{1,331} = 108,49$$
 . Аналогично,

$$\Delta T_2' = \Delta T \cdot \frac{\left(R_{_{GH}}'\right)_2}{R_{_{GH}}'} = 328,32^{0}C \quad \Delta T_3' = \Delta T \cdot \frac{\left(R_{_{GH}}'\right)_3}{R_{_{GH}}'} = 261,23^{0}C \quad \Delta T_4' = \Delta T \cdot \frac{\left(R_{_{GH}}'\right)_4}{R_{_{GH}}'} = 251,95^{0}C$$

4.По перепадам температурам определяем среднее значение температуры и значения температур на границах каждого (первое приближение)

$$T'_{2} = T_{1} - \Delta T'_{1} = T_{1} - \frac{T_{1} + T'_{2}}{2} = 1000 - 108,49 = 891,51^{\circ}C \quad \overline{T}'_{12} = \frac{1000 + 891,51}{2} = 945,76^{\circ}C$$

$$T'_{3} = T_{2} - \Delta T'_{2} = 892 - 328 = 564^{\circ}C \quad \overline{T}'_{23} = \frac{T'_{2} + T'_{3}}{2} = \frac{892 + 564}{2} = 728^{\circ}C$$

$$T'_{4} = T_{3} - \Delta T'_{3} = 564 - 262 = 302^{\circ}C \quad \overline{T}'_{34} = \frac{T'_{3} + T'_{4}}{2} = \frac{564 + 302}{2} = 433^{\circ}C$$

$$T_{.K.}$$
 $T_5 = 50^{0} C$, $\overline{T}'_{45} = \frac{T'_4 + T'_5}{2} = \frac{302 + 50}{2} = 176^{0} C$

5.Определяем коэффициент теплопроводности по слоям

$$\lambda_1'' = 0.755 + 0.00058 \cdot 946 = 1.303 \frac{Bm}{M \cdot K}$$

$$\lambda_2'' = 0.5 + 0.00016 \cdot 728 = 0.616 \frac{Bm}{M \cdot K}$$

$$\lambda_3'' = 0.314 + 0.00035 \cdot 433 = 0.465 \frac{Bm}{M \cdot K}$$

$$\lambda_4'' = 0.255 + 0.00026 \cdot 176 = 0.300 \frac{Bm}{M \cdot K}$$

6. Уточняем термическое сопротивление стенки с учетом нагрева слоев

$$R_{g_H}'' = \sum_{i=1}^{4} \left(R_{g_H}'' \right)_i = \sum_{i=1}^{4} \frac{\delta_i}{\lambda_i''} = \frac{0,115}{1,303} + \frac{0,23}{0,616} + \frac{0,115}{0,465} + \frac{0,09}{0,300} = 0,0883 + 0,3734 + 0,2473 + 0,3 = 1,01 \frac{M^2 K}{Bm}$$

Поскольку термическое сопротивление стенки по сравнению с прошлой итерацией изменилось на 30%, необходимы дальнейшие уточнения.

7. Уточняем значения перепадов температуры в каждом слое стенки

$$\Delta T_{1}'' = \Delta T \cdot \frac{\left(R_{gH}''\right)_{1}}{R_{gH}''} = 950 \cdot \frac{0,0883}{1,01} = 83^{0} C$$

$$;$$

$$\Delta T_{2}'' = \Delta T \cdot \frac{\left(R_{gH}''\right)_{2}}{R_{gH}''} = 950 \cdot \frac{0,3734}{1,01} = 352^{0} C$$

$$\Delta T_{3}'' = \Delta T \cdot \frac{\left(R_{gH}''\right)_{3}}{R_{gH}''} = 950 \cdot \frac{0,2473}{1,01} = 232^{0} C$$

$$\Delta T_{4}'' = \Delta T \cdot \frac{\left(R_{gH}''\right)_{4}}{R_{gH}''} = 950 \cdot \frac{0,3}{1,01} = 282^{0} C$$

8.Уточняем значения температур границ слоев и средних температур слоев стенки

$$T_{2}'' = T_{1} - \Delta T_{1}'' = 1000 - 83 = 917^{0}C; \quad \overline{T_{12}''} = \frac{1000 + 917}{2} = 958^{0}C$$

$$T_{3}'' = T_{2}'' - \Delta T_{2}'' = 917 - 352 = 565^{0}C; \quad \overline{T_{23}''} = \frac{T_{2}'' + T_{3}''}{2} = \frac{917 + 565}{2} = 741^{0}C$$

$$T_{4}'' = T_{3}'' - \Delta T_{3}'' = 565 - 232 = 333^{0}C; \quad \overline{T_{34}''} = \frac{T_{3}'' + T_{4}''}{2} = \frac{565 + 333}{2} = 449^{0}C$$

$$T_{\text{.K.}} T_5 = 50^{\circ} C, \overline{T}_{45}'' = \frac{T_4'' + T_5''}{2} = \frac{333 + 50}{2} = 191^{\circ} C$$

5.Уточняем коэффициент теплопроводности по слоям

$$\lambda_{1}''' = 0,755 + 0,00058 \cdot 958 = 1,316 \frac{Bm}{M \cdot K}$$

$$\lambda_{2}''' = 0,5 + 0,00016 \cdot 741 = 0,619 \frac{Bm}{M \cdot K}$$

$$\lambda_{3}''' = 0,314 + 0,00035 \cdot 449 = 0,471 \frac{Bm}{M \cdot K}$$

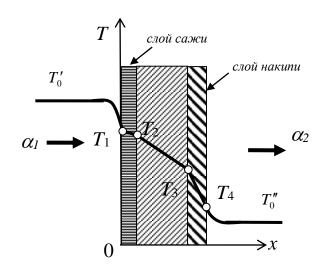
$$\lambda_{4}''' = 0,255 + 0,00026 \cdot 191 = 0,305 \frac{Bm}{M \cdot K}$$

6. Уточняем термическое сопротивление стенки с учетом нагрева слоев

$$R_{gH}^{""} = \sum_{i=1}^{4} \left(R_{gH}^{""}\right)_{i} = \sum_{i=1}^{4} \frac{\delta_{i}}{\lambda_{i}^{"'}} = \frac{0.115}{1.316} + \frac{0.23}{0.619} + \frac{0.115}{0.471} + \frac{0.09}{0.305} = 0.0874 + 0.3716 + 0.2442 + 0.2951 = 0.9983 \frac{M^{2}K}{Bm}$$

Поскольку термическое сопротивление стенки по сравнению с прошлой итерацией изменилось менее, чем на 1%, будем считать полученный результат окончательным (в противном случае следовало бы еще раз повторить пп..4÷6).

7. Находим плотность теплового потока


$$q = \frac{\Delta T}{R_{g_H}^{m}} = \frac{950}{0.9983} = 952 \frac{Bm}{M^2}$$

Задания для самостоятельного решения

- 1.Определить потерю теплоты в единицу времени Q,Bт, через стенку из красного кирпича длиной L=5м, высотой H=4м и толщиной δ =0,250м, если температуры на поверхностях стенки поддерживаются T_1 =110°C и T_2 =40°C. Коэффициент теплопроводности красного кирпича λ =0,7Bт/(м·К). Ответ: Q=3920Bт.
- 2.Плоская стенка бака площадью $S=5m^2$ покрыта двухслойной тепловой изоляцией. Стенка бака стальная, толщиной $\delta_1=8$ мм, с коэффициентом теплопроводности $\lambda_1=46,5$ Вт/(м·К). Первый слой изоляции выполнен из асбозурита толщиной $\delta_2=50$ мм, коэффициент теплопроводности которого описывается температурной зависимостью . $\lambda_2=0,144+0,00014\cdot \overline{T}$; второй слой изоляции толщиной $\delta_3=10$ мм представляет собой штукатурку, коэффициент теплопроводности которой равен $\lambda_3=0,698$ Вт/(м·К). Температура внутренней поверхности стенки бака составляет $T_1=250$ °C, температура внешней поверхности изоляции $T_4=50$ °C. Вычислить количество теплоты, переданной через стенку за 1секунду, температуры на границах слоев изоляции, и построить график распределения температур по толщине стенки. **Ответ: Q=**3170Bт; . $T_2=249,9$ °C; $T_3=59$ °C.
- 3.Вычислить потери теплоты через 1m^2 кирпичного ограждения котла-утилизатора в районе водяного экономайзера и температуры на поверхностях ограждения, если оно выполнено из кирпича толщиной δ =250мм; температура газов T_0' =700°C , а воздуха в цехе T_0'' =30°C. Коэффициент теплоотдачи от газов к внутренней поверхности стенки равен

 $\alpha_1 = 23 \frac{\mathit{Bm}}{\mathit{m}^2 \cdot \mathit{K}}$, а от наружной поверхности к окружающей среде коэффициент тепл $\alpha_2 = 12 \frac{Bm}{M^2 \cdot K}$

коэффициент теплопроводности стенки

равен
$$\lambda = 0.7 \frac{Bm}{M \cdot K}$$
 .. **Ответ:** $q = 1385 \text{Bt/m}^2$; . $T_1 = 640 \,^{\circ}\text{C}$; $T_2 = 145.5 \,^{\circ}\text{C}$.

4. В процессе службы поверхность нагрева плоского кессона со стороны рабочего пространства печи покрылась слоем сажи $\delta_c=1$ мм; $\lambda_c=0.08$ Вт/(м·К), а со стороны водяного охлаждения – слоем накипи толщиной δ_H =2мм, λ_H =0,8Bт/(м·К).Сам кессон выполнен из стального листа толщиной $\delta=12$ мм, $\lambda=50$ Вт/(м·К). Температура газов в рабочем пространстве

печи $T_0' = 1000$ °С , температура кипящей воды — $T_0'' = 200$ °С. Коэффициент теплоотдачи от газов к стенке α_1 =100 Bт/(м²·K), а от стенки к кипящей воде α_2 =5000 Bт/(м²·K).Вычислить плотность теплового потока и температуры на поверхностях соответствующих слоев. **Other:** $q=31500 \text{ Bt/m}^2$; . $T_1=685^{\circ}\text{C}$; $T_2=291^{\circ}\text{C}$; $T_3=283^{\circ}\text{C}$; $T_4=206^{\circ}\text{C}$.

5.В рабочем пространстве печи кузнечного цеха температура газов должна поддерживаться равной $T_{01}=1300$ °C; температура воздуха в цехе $T_{02}=30$ °C. Стены камеры выполнены из слоя огнеупора толщиной $\delta_1 = 250$ мм с $\lambda_1 = 0.28 \cdot (1 + 0.833 \cdot 10^{-3} \cdot T)$ Вт/(м²·K) и слоя диатомитового кирпича с коэффициентом теплопроводности $\lambda_2 = 0.113 \cdot (1 + 0.206 \cdot 10^{-10})$ $^{3}\cdot T)$ BT/($M^{2}\cdot K$).

Коэффициент теплоотдачи от газов к футеровке α_1 =30 Bt/(м² K), а от внешней поверхности камеры к окружающей среде $\alpha_2=10~\mathrm{Br/(m^2\cdot K)}$. Какой должна быть толщина диатомитового слоя, чтобы потери в окружающую среду не превышали 750Вт/м²? **Ответ:** $\delta_2 = 132$ мм.

6.Определить тепловые потери с 1м трубопровода диаметром $d_1/d_2=150/165$ мм, покрытого слоем изоляции толщиной δ2=60мм. Коэффициент теплопроводности изоляции $\lambda_2=0,15$ Вт/(м·К). Коэффициент теплоотдачи от поверхности изоляции к окружающему воздуху $\alpha_2 = 8$ BT/($M^2 \cdot K$). Трубопровод проложен на открытом воздухе, температура которого $T_0'' = -15$ °C. Внутри трубопровода протекает вода со средней температурой T_0' =90°C. Коэффициент теплопроводности материала трубы равен

 $\lambda = 50 \frac{Bm}{M_{\odot} K}$. Коэффициент теплоотдачи от воды к стенке трубы $\alpha_1 = 1000$ Bt/(м²·K), . **Otbet:** $Q_{\ell} = 145 \text{BT/M}$; . $T_2 = 89.9 ^{\circ}\text{C}$; $T_3 = 5.3 ^{\circ}\text{C}$.

Тема: Конвективный и сложный теплообмен

Задание 1 (пример решения)

Плоская поверхность стального листа длиной l_0 =2м обтекается продольным потоком воздуха. Скорость и температура набегающего потока равны, соответственно, и₀=3м/с и T₀=20°C. Вычислить толщину гидродинамического пограничного слоя и локальные значения коэффициентов теплоотдачи на различных расстояниях от передней кромки пластины: $x = 0.1l_0; 0.2l_0; 0.5l_0; l_0$.

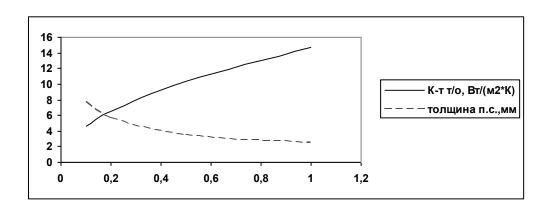
Решение:

1.При T_0 =20°С в Приложении находим Ідля воздуха

 $v_{\rm B}=15.06\cdot10^{-6}{\rm M}^2/{\rm c}$; $\lambda_{\rm B}=2.59\cdot10^{-2}{\rm BT/(M\cdot K)}$; $Pr_{R}=0.703$.

2. Определяем максимально возможное значение числа Рейнольдса

всей пластины ламинарное.


3. При ламинарном режиме справедливы следующие соотношения

$$\mathcal{S} = \frac{4,64 \cdot x}{\sqrt{\text{Re}_{x}}}$$
 для толщины пограничного слоя

• для числа Нуссельта $Nu_x = 0.335 \cdot \text{Re}_x^{0.5} \cdot \text{Pr}^{0.33}$; $\alpha_x = \frac{\lambda \cdot Nu_x}{x}$

По этим формулам получаем

	J			
x/l_0	0,1	0,2	0,5	1,0
δ, мм	4,65	6,58	10,4	14,7
α_x , BT/($M^2 \cdot K$)	7,7	5,65	3,45	2,44

Задание 2 (пример решения)

На плоскую поверхность набегает поток воздуха со скоростью 7,5 м/с, имеющий температуру 20°C. Определить толщину пристеночного пограничного слоя на расстоянии 1,2м от передней кромки поверхности, а также величину касательного напряжения трения и локального коэффициента теплоотдачи на поверхности пластины в этой точке. Решение:

1.Определяем режим течения в пограничном слое при x=1,2м.

$$\operatorname{Re}_{x} = \frac{u_{0} \cdot x}{v} = \frac{7.5 \cdot 1.2}{15.06 \cdot 10^{-6}} = 597610 > 5 \cdot 10^{5} = \operatorname{Re}_{u}^{sp}$$
, \Rightarrow режим течения турбулентный.

2.Определяем толщину пограничного слоя по формуле

$$\delta_T = \frac{0.376 \cdot x}{\text{Re}_x^{0.2}} = \frac{0.376 \cdot 1.2}{597610^{0.2}} = 0.0316M$$

3.Определяем касательное напряжение трения

$$\tau_{w}^{T} = 0.0296 \frac{\rho u_{0}^{2}}{\text{Re}_{x}^{0.2}} = \frac{0.0296 \cdot 1.29 \cdot 7.5^{2}}{597610^{0.2}} = 0.15 \Pi a$$

4.Вычисляем значение локального числа Нуссельта по формуле $Nu_{_{x}}=0{,}029\,\mathrm{Re}_{_{x}}^{0,8}=0{,}029\cdot597610^{0,8}=1212$

$$Nu_x = 0.029 \,\text{Re}_x^{0.8} = 0.029 \cdot 597610^{0.8} = 1212$$

5. Находим локальное значение коэффициента теплоотдачи

$$\alpha_x = \frac{\lambda - Nu_x}{x} = \frac{0,0259 - 1212}{1,2} = 26,16 \frac{Bm}{M^2 - K}$$

Задание 3 (пример решения)

Тонкая пластина длиной 2м и шириной 1,5м обтекается продольным потоком воздуха. Скорость и температура набегающего потока равны, соответственно, 3м/с и 20°C. Температура поверхности пластины 90°С. Определить средний по длине пластины коэффициент теплоотдачи и количество теплоты, отдаваемой пластиной воздуху в единицу времени.

Решение:

1.При T₀=20°C в Приложении находим физические параметры воздуха $v_B = 15,06 \cdot 10^{-6} \text{ m}^2/\text{c};$ $\lambda_{\rm B}=2,59\cdot10^{-2}{\rm BT/(M\cdot K)};$ $Pr_{B}=0.703$.

2.Определяем режим движения воздуха вдоль пластины

3. Определяем среднее по пластине число Нуссельта

$$\overline{Nu} = 0.67 \cdot \text{Re}^{0.5} \cdot \text{Pr}^{0.33} = 0.67 \cdot (3.98 \cdot 10^5)^{0.5} \cdot (0.703)^{0.33} = 376.3$$

4. Определяем средний по пластине коэффициент теплоотдачи

$$\overline{\alpha} = \frac{\lambda_{g} \cdot \overline{Nu}}{l_{0}} = \frac{2,59 \cdot 10^{-2} \cdot 376,3}{2} = 4,87 \frac{Bm}{M^{2} \cdot K}$$

5. Определяем тепловой поток от поверхности пластины в окружающую среду $Q_w = \overline{\alpha} \cdot 2 \cdot F_w \cdot (T_w - T_0) = \overline{\alpha} \cdot a \cdot l_0 \cdot (T_w - T_0) = 4,87 \cdot 2 \cdot 2 \cdot 1,5 \cdot (90 - 20) = 2045Bm.$

Задание 4 (пример решения)

Определить поток теплоты, передаваемый в результате свободной конвекции от вертикальной трубы с внешним диаметром d=120мм и длиной l=3,6м, имеющей температуру наружной поверхности T_{ст}=150°C, окружающему воздуху с температурой $T_{\kappa}=20^{\circ}C/$

Решение:

1.При T₀=20°C находим физические параметры воздуха

$$\nu_{\rm B} = 15,06 \cdot 10^{-6} {\rm M}^2/{\rm c}; \qquad \lambda_{\rm B} = 2,59 \cdot 10^{-2} {\rm BT/(M \cdot K)}; \qquad \Pr_{\rm B} = 0,703 \; . \; \frac{\Pr_{_{\mathcal{M}^c}}}{\Pr_{_{cm}}} \approx 1 \; ; \\ \beta_{_{\mathcal{M}^c}} = \frac{1}{273 + T_{_{\mathcal{M}^c}}} = \frac{1}{293} \; . \; \frac{1}{293} \; \frac{1}{2$$

2.Определяем режим свободно-конвективного течения

$$Gr_{\infty} = \frac{\beta_{\infty} \cdot g \cdot \Delta T \cdot \ell_0^3}{v^2} = \frac{1}{293} \cdot \frac{9,81 \cdot (150 - 20) \cdot 3,6^3}{15,06^2} \cdot 10^{12} = 0,9 \cdot 10^{12}$$

 $Gr_{\text{\tiny LC}} = 0.9 \quad 10^{12} \quad 0.7 = 0.63 \quad 10^{12} > 10^9 \Rightarrow$ режим движения турбулентный.

2.Определяем значение осредненного безразмерного коэффициента теплоотдачи

$$\overline{Nu}_{\infty} = 0.13 \cdot Gr_{\infty}^{0.33} = 0.13 \cdot (0.9 \cdot 10^{12})^{0.33} = 1255$$

3.Определяем среднее значение коэффициента теплоотдачи от стенки к воздуху

$$\overline{\alpha} = \frac{\overline{Nu}_{\infty} \cdot \lambda_{\infty}}{l} = \frac{1255 \cdot 0,0259}{3,6} = 9,05 \frac{Bm}{M^2 \cdot K}$$

4. Тепловой поток от стенки к воздуху

$$Q = \overline{\alpha}$$
 F $(T_{cm} T_{xc}) = 9.05$ 3.14 0.12 3.6 130 = 1600 Bm.

Задания для самостоятельного решения

1. Плоская пластина длиной 1м обтекается продольным потоком воздуха. Скорость и температура набегающего потока 80м/с и 10°С. Перед пластиной установлена турбулизирующая решетка, вследствие чего движение в пограничном слое на всей длине пластины турбулентное. Вычислить среднее значение коэффициента теплоотдачи с поверхности пластины и локальное значение коэффициента теплоотдачи на задней кромке пластины. Вычислить также толщину гидродинамического пограничного слоя на задней

кромке пластины. **Ответ:**
$$\overline{\alpha} = 202,51 \frac{Bm}{m^2 \cdot K}$$
; $\alpha_x = 161,4 \frac{Bm}{m^2 \cdot K}$; $\delta_x^T = 0,0165 m$

- 2.Тонкая пластина длиной l_0 =3м обтекается потоком воздуха. Скорость и температура набегающего потока равны, соответственно, u_0 =10м/с, T =20°C. Вычислить толщину пристеночного пограничного слоя, значения напряжений вязкого трения и значения локального коэффициента теплоотдачи в следующих сечениях: x = 0,1 l_0 ;0,2 l_0 ;0,5 l_0 ; l_0 Построить графики изменения этих величин по длине пластины.
- 3.Вычислить потери тепла в единицу времени с 1m^2 поверхности горизонтального теплообменника, корпус которого имеет цилиндрическую форму и охлаждается свободным потоком воздуха. Наружный диаметр корпуса теплообменника T_c =400мм, температура поверхности d=200°C, температура воздуха в помещении $T_{\text{ж}}$ =30°C.

Ответ:
$$\alpha = 5.9 \frac{Bm}{m^2 \cdot K}$$
; $q = 1000 \frac{Bm}{m^2}$.

4.Определить коэффициент теплоотдачи от вертикальной плиты высотой H=2м к окружающему спокойному воздуху, если известно, что температура поверхности плиты $T_c=100$ °C, температура окружающего воздуха вдали от поверхности $T_{\pi}=20$ °C.

Ответ:
$$\alpha = 7.92 \frac{Bm}{M^2 \cdot K}$$
.

Тема: Теплообмен излучением

Задание 1 (пример решения)

Определить плотность потока интегрального излучения поверхности Солнца, если известно, что ее температура равна 5700°C и условия излучения близки излучению а.ч.т. Вычислить также длину волны максимального спектрального излучения и общее количество лучистой энергии, испускаемой Солнцем в единицу времени, если диаметр Солнца можно принять равным 1,391·10⁹м.

Решение

1. Плотность потока интегрального излучения

$$q = C_0 \left(\frac{T}{100}\right)^4 = 5,67 \left(\frac{5973}{100}\right)^4 = 72,17 \cdot 10^6 \frac{Bm}{M^2}$$

2. Длина волны, соответствующая максимальной плотности потока спектрального

2.Длина волны, соответствующая ман
$$\lambda_{\text{max}} = \frac{2897,8}{5973} = 0,485$$
 мкм

3. Поток лучистой энергии

$$Q^{0} = q^{0} \cdot F = q^{0} \cdot \pi \frac{d^{2}}{4} = 72,17 \cdot 10^{6} \cdot 3,1416 \cdot (1,391 \cdot 10^{9})^{2} / 4 = 1,905 \cdot 10^{26} Bm$$

Задание 2 (пример решения)

Поверхность стального листа имеет температуру 727° С и степень черноты ϵ =0,7. Излучающую поверхность можно считать серой. Вычислить плотность потока собственного излучения поверхности и длину волны, которой соответствует максимальное значение q.

Решение

Плотность потока собственного излучения листа

$$q^{co\delta} = \varepsilon q^0 = \varepsilon C_0 \left(\frac{T}{100}\right)^4 = 0.7 \cdot 5.67 \cdot \left(\frac{1000}{100}\right)^4 = 3.97 \cdot 10^4 \frac{Bm}{M^2}$$

Длина волны, которой соответствует максимальное значение $q^{co\delta}$

$$\lambda_{\text{max}} = \frac{2897.8}{T} = \frac{2897.8}{1000} = 2,898 \text{мкм}$$

$$q_{\lambda} = 3.97 \quad 10^4 \frac{Bm}{M^2}$$
; $\lambda_{max} = 2.898 \text{ MKM}.$

Задание 3 (пример решения)

Оптический пирометр основан на сравнении яркости излучения исследуемого тела с яркостью излучения нити накаливания. Прибор проградуирован по излучению а.ч.т., и поэтому он измеряет температуру, которую имело бы а.ч.т. при той же яркости излучения, какой обладает исследуемое тело. В пирометре использован красный светофильтр (λ=0,65мкм). Какова истинная температура тела, если пирометр зарегистрировал температуру 1400°С, а степень черноты тела при λ =0,65мкм равна 0,6? Решение

1.Спектральная яркость исследуемого тела

$$B_{\lambda} = \frac{q_{\lambda}}{\pi} = \frac{1}{\pi} \cdot \frac{\varepsilon_{\lambda} \cdot C_{1}}{\lambda^{5} \cdot \left[\exp\left(\frac{C_{2}}{\lambda T}\right) - 1 \right]}$$
The $C_{1} = 2\pi \cdot 5 \cdot 944 \cdot 10^{-7}$: $C_{2} = 1 \cdot 4388 \cdot 10^{-2}$

Т- абсолютная температура исследуемого тела.

2. Спектральная яркость абсолютно черного тела

$$B_{\lambda}^{0} = \frac{q_{\lambda}^{0}}{\pi} = \frac{1}{\pi} \cdot \frac{\varepsilon_{\lambda} \cdot C_{1}}{\lambda^{5} \cdot \left[\exp\left(\frac{C_{2}}{\lambda T_{0}}\right) - 1 \right]},$$

где T_0 – абсолютная температура а.ч.т. ; при $B_\lambda=B_\lambda^0$ — это та температура, которую показывает пирометр.

3.В соответствии с условием задачи, $\frac{C_2}{\lambda T_0} = \frac{1,4388 \cdot 10^{-2}}{0,65 \cdot 10^{-6} \cdot 1673} = 13,2$. Т.к. 13,2>>1, в

формулах для яркости можно пренебречь единицей в знаменателе.

4.Из условия $B_{\lambda} = B_{\lambda}^{0}$ получим

$$\frac{1}{\pi} \cdot \frac{\varepsilon_{\lambda} \cdot C_{1}}{\lambda^{5} \cdot \exp\left(\frac{C_{2}}{\lambda T}\right)} = \frac{1}{\pi} \cdot \frac{C_{1}}{\lambda^{5} \cdot \exp\left(\frac{C_{2}}{\lambda T_{0}}\right)} \underbrace{\frac{\varepsilon_{\lambda}}{\exp\left(\frac{C_{2}}{\lambda T}\right)}} = \frac{1}{\exp\left(\frac{C_{2}}{\lambda T_{0}}\right)}$$

откуда можно получить $\frac{1}{T}=\frac{1}{T_0}+\frac{\lambda}{C_2}\ln\,\varepsilon_\lambda$, и окончательно $T=\frac{1}{\frac{1}{T_0}+\frac{\lambda}{C_2}\ln\,\varepsilon_\lambda}$.

$$T = \frac{1}{\frac{1}{1673} + \frac{0.65 \cdot 10^{-6}}{1.4388 \cdot 10^{-2}} \cdot (-0.5108)} = 1740K$$

Подставляем численные значения

Задание 4 (пример решения)

Ограждения рабочего пространства печи выполнены из шамотного кирпича, а внешняя обшивка — из листовой стали. Расстояние между обшивкой и кладкой равно 30 мм, и можно считать его малым по сравнению с размерами стен рабочей камеры.

Вычислить потери тепла в окружающую среду с единицы поверхности в единицу времени в условиях стационарного режима за счет лучистого теплообмена между поверхностями кладки и обшивки,. Температура внешней поверхности кладки $T_1=127$ °C, а температура стальной обшивки $T_2=50$ °C. Степень черноты шамота $\varepsilon_{III}=0.8$, а листовой стали $\varepsilon_{CT}=0.6$.

Решение

Кладку и обшивку можно рассматривать, как две безграничные плоскопараллельные пластины, разделенные лучепрозрачной средой. Для этой системы $\phi_{12} = \phi_{21} = 1$, и плотность потока результирующего излучения равна

$$q_1^{pes} = \varepsilon_{np} \cdot C_0 \cdot \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right], \text{ где}$$

$$\varepsilon_{np} = \frac{1}{\varepsilon_1^{-1} + \varepsilon_2^{-1} - 1} = \frac{1}{\frac{1}{0.8} + \frac{1}{0.6} - 1} = 0,522$$
.
$$q_1^{pes} = 0,522 \cdot 5,67 \cdot \left[\left(\frac{127 + 273}{100} \right)^4 - \left(\frac{50 + 273}{100} \right)^4 \right] = 435 \frac{Bm}{M^2}$$
 Тогда

Задание 5 (пример решения)

В нагревательной печи температура газов во всем объеме постоянна и равна $1200\,^{\circ}$ С. Объем печи V= $12\mathrm{m}^3$, полная поверхность ограждения имеет площадь F= $28\mathrm{m}^2$. Парциальное давление водяных паров $p_{H_20}=8\kappa\Pi a$, а диоксида углерода $p_{CO_2}=12\kappa\Pi a$. Вычислить степень черноты газа и собственное излучение продуктов сгорания.

Решение

1.Оптическая длина пути луча
$$l_{s\phi} = 3.6$$
 $\frac{V}{F} = 3.6$ $\frac{12}{28} = 1.54$ м

2. Произведение парциального давления на $l_{s\phi}$

$$p_{co_2} \cdot l_{s\phi} = 1, 2 \cdot 10^4 \cdot 1, 54 = 1, 85 \cdot 10^4 \Pi \text{a·m} \; ; \quad p_{H_2O} \cdot l_{s\phi} = 0, 8 \cdot 10^4 \cdot 1, 54 = 1, 23 \cdot 10^4 \Pi \text{a·m}$$

3. Степень черноты CO₂ и H₂O при T=1200°C определяем по номограммам ε_{CO_2} .=0,11; ε_{H_2O} =0,10.

4.Степень черноты газовой смеси $\varepsilon_r = \varepsilon_{CO_2} + \beta \cdot \varepsilon_{H_2O}$. Т.к. $\beta = 1,05 \Rightarrow \varepsilon_r = 0,11+1,05\cdot 0,10=0,215$.

5. Собственное излучение продуктов сгорания

$$q_{z}^{co\delta} = \varepsilon_{z} \cdot C_{0} \cdot \left(\frac{T_{z}}{100}\right)^{4} = 0,215 \cdot 5,67 \cdot \left(\frac{1473}{100}\right)^{4} = 57400 \frac{Bm}{M^{2}}$$

Ответ: 57400 Вт/м²

Задание 6 (пример решения)

Для условий задачи №5 найти плотность потока результирующего излучения на поверхность металлической заготовки, если $T_M=700$ °C, $\epsilon_{orp}=0.8$, $\epsilon_M=0.6$, площадь тепловоспринимающей поверхности $F_M=2$ м².

Решение

Задания для самостоятельного решения

- 1. Найти максимальные значения спектральной интенсивности излучения для условий примеров 1 и 2. **Ответ:** 1) $q_{\lambda_{\max}}^0 = 9{,}94$ $10^3 \frac{Bm}{M^3}$; 2) $q_{\lambda_{\max}}^0 = 9{,}15$ $10^9 \frac{Bm}{M^3}$
- 2. Определить, какую долю излучения, падающего от абсолютно черного тела, будет отражать поверхность полированного алюминия при температуре 250° С, если известно, что при этой температуре плотность потока эффективного излучения поверхности равна $q^{3\varphi\varphi}$ ==4238 BT/м². Степень черноты алюминия при этой температуре равна ϵ =0,039. Температура а.ч.т. равна температуре поверхности алюминия. **Ответ:** R=0,96 3. Вычислить значения плотностей потоков собственного, эффективного, отраженного и
- 3. Вычислить значения плотностей потоков собственного, эффективного, отраженного и падающего излучения для поверхностей шамотной кладки и стальной обшивки в условиях задачи №4.

Ответ:

Поток	кладка (i=1)	обшивка(i=2)
$q_i^{cooldsymbol{o}}$	1161	370
$q_i^{\circ \phi \phi}$	1362	907
q_i^{omp}	181	537
$q_i^{na\partial}$	907	1342

- 4. Температура тела измеряется двумя разными оптическими пирометрами с разными светофильтрами. В первом пирометре установлен красный светофильтр(λ_1 =0,65мкм), а во втором зеленый (λ_2 =0,50мкм). Температуры, показываемые пирометрами, соответственно, равны T_1 =1400°C и T_2 =1420°C. Найти истинную температуру тела и его степень черноты, считая тело серым. **Ответ:** T=1492°C; ε =0,71.
- 5. Нагрев вольфрамового образца осуществляется в муфельной электрической печи с температурой стенки муфеля T_2 =1000°С. Степень черноты поверхности вольфрамового образца ϵ_1 =0,8(средняя за период нагрева) и степень черноты шамотной стенки муфельной печи ϵ_2 =0,8.Площадь поверхности муфеля, участвующая в лучистом теплообмене, много больше поверхности образца (F_1 >> F_2). Вычислить значение плотности результирующего потока в зависимости от температуры поверхности образца в процессе ее нагрева и построить график этой зависимости. Вычисления произвести для следующих температур: T_1 ={20,100,300,500,700}.

. Ответ:

T ₁ , °C	20	100	300	500	700
q^{pe3} , $\kappa B_T/m^2$	118,2	118,8	114,2	102,9	78,5

Тема: Теплопроводность при нестационарном режиме

Задание 1 (пример решения)

Огнеупорная пластина толщиной 2δ =20мм, нагретая до температуры 140° С, помещена в воздушную среду с температурой 15° С. Определить температуры в середине и на поверхности пластины через 20мин после начала охлаждения. Коэффициент теплопроводности огнеупора λ =0,175 Bt/(м·K), к-т температуропроводности a=0,833· 10° 7 м²/с; к-т теплоотдачи от пластины в окружающую среду α =65 Bt/(м²·K).

Решение

Температуры в середине и на поверхности безграничной пластины можно определить с помощью графиков (номограмм) Будрина

$$\Theta_u = f_1(Bi, Fo)$$
 — номограмма для центра пластины

$$\Theta_{nos} = f_2(\emph{Bi},Fo)$$
 — номограмма для поверхности пластины.

$$Bi = \frac{\alpha \cdot \delta}{\lambda} = \frac{65 \cdot 0.01}{0.175} = 3.73$$

В рассматриваемом случае

$$Fo = \frac{a \cdot t}{R^2} = \frac{0.833 \cdot 10^{-7} \cdot (20 \cdot 60)}{0.01^2} = 1.0$$

При этих значениях критериев подобия находим

 $\Theta_{_{_{\it{U}}}} = 0,\!26 -$ по номограмме для центра пластины

 $\Theta_{nos} = 0.083 -$ по номограмме для поверхности пластины.

Тогда
$$T_{\scriptscriptstyle \parallel} = T_{\scriptscriptstyle 0} - \Theta_{\scriptscriptstyle \parallel} (T_{\scriptscriptstyle 0} - T_{\scriptscriptstyle \parallel}) = 15 - 0.26 \cdot (15 - 140) = 47.5^{\circ} C$$

$$T_{no6} = T_n - \Theta_{no6} \cdot (T_n - T_n) = 15 - 0.083 \cdot (15 - 140) = 25.4^{\circ} C$$

Задание 2 (пример решения)

Для условий задания 1 определить температуру на расстоянии $x=\frac{\delta}{2}=5$ мм от середины пластины. Определить также безразмерные температуры в середине и на поверхности пластины расчетным путем и сравнить результаты расчета со значениями $\theta_{x=0}$ и $\theta_{x=\delta}$, полученными в задании 1.

Решение

Безразмерная температура неограниченной пластины при охлаждении в среде с постоянной температурой выражается уравнением (9). Т.к. в рассматриваемом случае число Fo>0,3 (см. Пример 1), то при вычислении по формуле (9) можно ограничиться только первым членом ряда. В этом случае формула (9) может быть переписана в виде $\theta = A \exp(-\mu_1^2 Fo) \cdot \cos(\mu_1 \cdot X)$

соответственно, для безразмерных температур в середине и на поверхности пластины получаем выражения

$$\theta_{x=0} = A_0 \exp(-\mu_1^2 Fo)$$

$$\theta_{x=\delta} = A_{\delta} \exp(-\mu_1^2 Fo)$$

Значения величин A_0 , A_δ , μ_1 и μ_1^2 в зависимости от Bi приведены в таблицах. В рассматриваемом случае при Bi=3,73 из этой таблицы находим A_0 =1,224; A_δ =0,390; μ_1 =1,248; μ_1^2 =1,56.Следовательно, при Fo=1

$$\begin{split} \theta_{x=\frac{\delta}{2}} &= 1{,}224 \cdot \frac{1{,}248}{2} \exp(-1{,}56) = 0{,}208; \\ &\text{это соответствует температуре} \\ T_{x=\frac{\delta}{2}} &= T_0 + \theta_{x=\frac{\delta}{2}} \quad \left(T_{_{_{\!H}}} \quad T_0\right) = 15 + 0{,}208 \quad 125 = 41\,^{\circ}C; \\ \theta_{x=0} &= 1{,}224 \cdot \exp(-1{,}56) = 0{,}257; \; \theta_{x=\delta} = 0{,}390 \cdot \exp(-1{,}56) = 0{,}082; \end{split}$$

Задание 3 (пример решения)

Определить время нагрева плоских стальных листов толщиной δ_1 =2 и δ_2 =20 мм до температуры T=732°C в печи с постоянной температурой $T_{\pi}=860$ °C при следующих исходных данных:

- начальная температура тела $T_H = 0$ °C;
- плотность материала тела $\rho = 7850 \text{кг/м}^3$;
- удельная теплоемкость c=0.55кДж/(кг·К); $\varepsilon_{np}=0.8$.

Нагрев листа – двусторонний.

Решение

Время нагрева термически тонкого тела в печи с температурой T_{π} от температуры T_{μ} до некоторой температуры Т при лучистом теплообмене описывается выражением

$$t=K\cdot rac{1}{T_3^3}\cdot \left[\psi\left(rac{T}{T_n}
ight)-\psi\left(rac{T_{_{
m H}}}{T_n}
ight)
ight], \ _{
m Где}K=rac{c\cdot
ho\cdot \delta}{arepsilon_{np}\cdot \sigma_0} \ _{
m -}$$
 вспомогательный коэффициент;

$$\psi(x) = \int \frac{dx}{1 - x^4} = 0.25 \cdot \left(\ln \left| \frac{1 + x}{1 - x} \right| + 2 \cdot arctg(x) \right).$$

а функция

$$x_1 = \frac{T}{T_n} = \frac{732 + 273}{860 + 273} = 0,887$$
 В нашем случае

$$\psi(x_1) = 0.25 \cdot \left(\ln \left| \frac{1 + 0.887}{1 - 0.887} \right| + 2 \cdot arctg(0.887) \right) = 1.066632$$

$$x_2 = \frac{T_n}{T_n} = \frac{0 + 273}{860 + 273} = 0.241 \quad \psi(x_2) = 0.25 \cdot \left(\ln \left| \frac{1 + 0.241}{1 - 0.241} \right| + 2 \cdot arctg(0.241) \right) = 0.241163$$

$$t = \frac{\delta}{2} \cdot \frac{550 \cdot 7850}{0.8 \cdot 5.67} \cdot 10^8 \cdot \frac{1}{\left(860 + 273\right)^3} \cdot \left(1,067 - 0.241\right) = 27028,36 \cdot \delta$$

Для δ_1 =2мм t_1 =54с, а для δ_2 =20мм t_2 =540с.

Задание 4 (пример решения)

Определить время нагрева стального цилиндрического прутка диаметром 40мм до температуры 950°С в трубчатой электрической печи с постоянной температурой 1000°С(нагрев всесторонний) при тех же исходных данных, что и в предыдущем задании.

Решение

Отличие от предыдущей задачи – только в том, что $K = \frac{c - \rho - d}{4 - \varepsilon_{nn} - \sigma_0}$, поскольку величина

δ, входящая в формулу для этого коэффициента, имеет смысл отношения объема нагреваемого тела к площади поверхности теплообмена.

В нашем случае
$$x_1 = \frac{T}{T_n} = \frac{950 + 273}{1000 + 273} = 0,9607$$
 и

$$\psi(x_1) = 0.25$$
 $\ln \left| \frac{1 + 0.9607}{1 + 0.9607} \right| + 2 \quad arctg(0.9607) = 1.3601$

$$x_2 = \frac{T_{_{H}}}{T_{_{D}}} = \frac{0 + 273}{860 + 273} = 0,241 \text{ M} \quad \psi(x_2) = 0,25 \quad \ln \left| \frac{1 + 0,241}{1 - 0,241} \right| + 2 \quad arctg(0,241) = 0,2412$$

$$t = \frac{0.04}{4} \quad \frac{550}{0.8} \quad \frac{7850}{5.67} \quad 10^{8} \quad \frac{1}{(1000 + 273)^{3}} \quad (1,3601 \quad 0,2412) = 516c$$

Анализ влияния различных факторов на время нагрева показывает, что решающее значение имеет температура печи, входящая в знаменатель правой части выражения (3) в

третьей степени. При одинаковых отношениях $\dfrac{T}{T_0}$ и $\dfrac{T_{_{\rm H}}}{T_0}$ время нагрева прямо

пропорционально кубу абсолютной температуры печи. Существенную роль играет также разность температур $\Delta T = T_0$ T: чем больше эта разность, тем короче время нагрева.

Если в последнем примере повысить T_0 на 10%, а именно – с 100°С до 1100°С, то значение времени нагрева уменьшится с 8 мин до 4,8 мин (т.е. на 40%).

Нагрев термически тонкого тела до температуры $T^* \approx 0.65T_0$ происходит с практически постоянной скоростью. Это связано с тем, что второй член в скобке выражения (3) при небольших значениях T относительно мал, поэтому начало прогрева тонких тел в печах с постоянной температурой характеризуется постоянством теплового потока, воспринимаемого поверхностью садки.

Задания для самостоятельного решения

1.Определить промежуток времени, по истечении которого лист стали, прогретый до температуры TH=500°C, будучи помещен в воздушную среду, температура которой T0=20°C, примет температуру, отличающуюся от температуры среды не более, чем на 1%. Толщина листа 2δ =20мм, коэффициент теплопроводности стали λ =45,5 BT/(м·K), теплоемкость стали с=0,46кДж/(кг·K); плотность стали ρ =7900кг/м³; коэффициент теплоотдачи от поверхности стального листа к окружающему воздуху α =35 BT/(м²-K) *Указание*: для оценки режима теплопроводности подсчитаем значение критерия Био

$$Bi = \frac{\alpha \cdot \delta}{\lambda} = \frac{35 \cdot 0.01}{45.5} = 0.0077 << 1$$

При Bi << 1 можно температуру по сечению пластины считать одинаковой во всех точках и воспользоваться формулой $\theta = \exp(-Bi \cdot Fo)$.

Ответ: 2часа 15 минут

2.Определить время t, необходимое для нагрева листа стали толщиной $2\delta=24$ мм, который имел начальную температуру Th=25°C, а затем был помещен в печь с температурой $T_0=600$ °C. Нагрев считать законченным, когда температура листа достигнет T=450°C.Коэффициент теплопроводности, теплоемкость, плотность стали равны,

соответственно: λ =45,4 Bt/(м²K) ; c=0,502 кДж/(кг·K); ρ =7800 кг/м³, а коэффициент теплоотдачи к поверхности листа α =23,3Bt/(м²·K)

Ответ: 45 минут

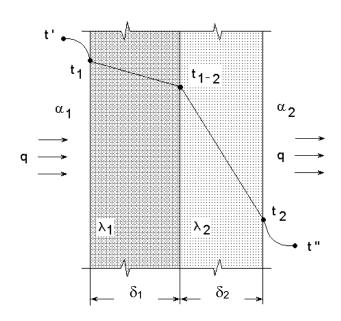
3.Длинный стальной вал диаметром $d=2r_0=120$ мм, который имел температуру 20° С, поместили в печь с температурой $T_0=820^{\circ}$ С.Определить время t , необходимое для нагрева вала до температуры на его оси , равной $T_{r=0}=800^{\circ}$ С . Определить также температуру на поверхности вала $T_{r=r_0}$ в конце нагрева.

Ответ:t=51 минута $T_{r=0} = 804$ °C

4.Определить значения плотностей и температур на поверхности и на оси вала в условиях задачи 3 по истечении 20 и 40 мин после загрузки вала в печь.

Ответ: 1) при t=20мин $T_{r=r_0}$ =656°C; $T_{r=0}$ =620°C

2) при t=40мин
$$T_{r=r_0}$$
 =763°C; $T_{r=0}$ =755°C


5.В шахтную электропечь с постоянной температурой 900°С помещена стальная болванка цилиндрической формы d=500мм с начальной температурой 20°С. Определить температуры поверхности и оси болванки через 1,5 ч после начала нагрева. Теплофизические данные — такие же, как в задаче 3. Значение коэффициента теплоотдачи от рабочего пространства печи к поверхности болванки $\alpha=180$ BT/(M^2 ·K).

Ответ: $T_{\text{пов}} = 667^{\circ}\text{C}$; $T_{\text{центр}} = 522^{\circ}\text{C}$;

Тема: Теплопередача

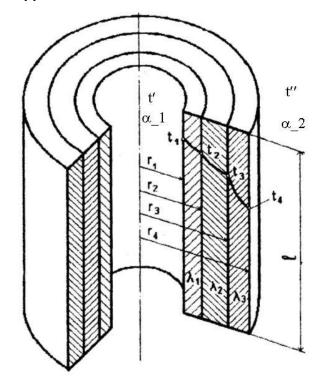
Задание 1

Расчеты по стационарной теплопередаче через плоскую стенку

Плоская печная стенка состоит из слоя δ_1 . шамота толшиной M И теплоизоляционного слоя толщиной δ_2 , Коэффициенты теплопроводности слоев соответственно равны λ_1 , $B_T/(M \cdot K)$ и λ_2 , $B_T/(M \cdot K)$. Температура печных газов (продуктов горения), омывающих внутреннюю поверхность стенки, t', 0 С. Температура воздуха в цехе, омывающая наружную поверхность стенки, t'', 0 С. Коэффициенты теплоотдачи: от печных газов к внутренней поверхности стенки α_1 , Bт/(м²·K), от наружной стенки к воздуху α_2 , Bт/(м²·K). Площадь стенки F, \mathbf{M}^2 .

Необходимо определить:

- 1. Общее тепловое сопротивление от печных газов к воздуху R_{Σ} ;
- коэффициент теплопередачи K_{Σ} ; плотность теплового потока q и количество тепла Q, теряемое через стенку за час, в трех вариантах, указанных в таблице.
- 2. Найти значение температуры t_{1-2} в плоскости контакта слоев 1-2 в вариантах II и III.
- 3. Построить для второго варианта график распределения температуры в координатах и t-R (температура тепловое сопротивление); сравнить температуры, полученные по графику t-R, с температурами, полученными расчетным путем.


Сводка результатов вычислений:

	Варианты задачі	1	
Расчетные величины	I. Без тепловой изоляции	II. С тепловой изоляцией толщиной δ_2	III. С тепловой изоляцией толщиной 2δ ₂
R_{Σ} , $M^2 \cdot K/B_T$			
K_{Σ} , BT/($M^2 \cdot K$),			
q, B _T /м ²			
Q, кДж			
t', ⁰ C			
t ₁ , ⁰ C			
t ₁₋₂ , ⁰ C	_		
t ₂ , ⁰ C			
t'', ⁰ C			

Варианты задания №1

№ вар.	δ_1	δ_2	λ_1	λ_2	t'	t''	α_1	α_2	F
1	0,23	0,12	1,16	0,12	1000	15	198	16	10
2	0,23	0,23	1,16	0,11	850	15	116	14	12
3	0,345	0,115	1,40	0,12	1100	20	210	16	12
4	0,23	0,23	1,16	0,07	900	18	116	16	14
5	0,46	0,115	1,40	0,08	1100	16	210	14	12
6	0,345	0,115	1,16	0,35	900	15	128	12	12
7	0,345	0,23	1,40	0,35	1200	15	280	14	10
8	0,23	0,13	1,16	0,35	900	20	125	14	10
9	0,46	0,13	1,28	0,35	1100	20	175	14	14
10	0,23	0,23	1,16	0,10	900	20	122	12	13
11	0,46	0,23	1,28	0,35	1100	20	210	14	14
12	0,345	0,115	1,16	0,35	1000	20	145	12	12
13	0,23	0,23	1,05	0,11	800	15	116	12	10
14	0,23	0,23	1,05	0,23	950	15	125	12	11
15	0,23	0,115	1,16	0,29	925	15	125	12	13
16	0,46	0,08	1,40	0,35	1200	20	255	16	12
17	0,345	0,10	1,35	0,35	1100	20	240	16	10
18	0,345	0,10	1,16	0,29	1050	14	215	15	10
19	0,23	0,23	1,16	0,29	950	18	128	12	12
20	0,46	0,10	1,28	0,35	1100	15	230	16	13

Задание 2

Для цилиндрической стенки, имеющей три слоя теплоизоляции, необходимо рассчитать:

- погонную плотность теплового потока;
- количество теплоты, которое теряется через всю цилиндрическую стенку длиной ℓ ;
- значение температур на границе слоев.

Следует изучить влияние толщины наружного слоя цилиндрической стенки (третьего слоя теплоизоляции) на величину линейной плотности теплового потока.

В выводах по заданию №2 необходимо ответить на следующие вопросы:

- 1. Почему при расчете процесса теплопроводности через цилиндрическую стенку используется понятие линейной плотности теплового потока?
- 2. Как изменяется линейная плотность теплового потока цилиндрической стенки при изменении толщины наружного слоя цилиндрической стенки (третьего слоя теплоизоляции)?
- 3. При каких условиях применение третьего слоя теплоизоляции приводит к увеличению тепловых потерь через цилиндрическую стенку?

Варианты задания №2

No	1	r ₁	r_2	r ₃	r_4	λ_1	λ_2	λ_3	α_1	α_2	t'	t''
вар.	-	-1	12	13		701	702	703				
1	4,2	1,67	1,90	1,97	2,00	2,00	0,84	0,18	1050	10	1500	50
2	3,6	0,90	1,005	1,135	1,20	1,67	1,06	0,38	1025	12	1550	49
3	3,0	1,50	1,74	1,84	1,90	1,73	0,90	0,11	1000	15	1505	48
4	3,25	1,20	1,40	1,53	1,60	1,80	0,98	0,23	1010	17	1515	47
5	3,9	0,95	1,10	1,225	1,30	1,79	1,00	0,16	999	20	1400	45
6	3,2	1,40	1,61	1,735	1,80	1,90	0,85	0,28	995	22	1450	43
7	3,65	1,00	1,225	1,35	1,40	1,72	0,97	0,32	990	25	1435	40
8	3,95	1,15	1,33	1,43	1,50	1,85	1,01	0,24	1100	31	1410	38
9	3,35	1,31	1,53	1,64	1,70	1,78	0,91	0,17	1009	35	1300	35
10	3,8	1,70	1,83	1,90	1,95	1,92	1,04	0,33	1005	37	1355	33
11	3,75	0,80	1,06	1,185	1,25	1,71	0,93	0,25	850	40	1310	30
12	3,15	1,20	1,35	1,58	1,65	1,84	0,88	0,30	1015	0,5	1200	28
13	4,0	0,95	1,15	1,275	1,35	1,77	0,95	0,12	1030	0,7	1210	26
14	3,1	1,48	1,70	1,79	1,85	1,94	1,00	0,34	1040	0,9	1250	24
15	3,45	1,10	1,30	1,38	1,45	1,70	0,92	0,27	980	11	1100	20
16	3,7	1,20	1,39	1,50	1,55	1,83	1,05	0,22	1017	13	1115	18
17	3,85	1,42	1,60	1,71	1,75	1,96	0,96	0,35	1019	16	1101	19
18	3,4	1,30	1,53	1,65	1,78	1,76	0,87	0,13	1027	19	1000	21
19	3,55	1,50	1,70	1,80	1,91	1,82	0,99	0,26	1035	21	1001	22
20	3,05	1,05	1,245	1,40	1,54	1,69	0,93	0,31	996	23	1010	23

Тема: Массообмен

Залание 1

На вертикальной поверхности высотой H м конденсируется сухой насыщенный пар с параметрами: $t_{\rm H}$ °C и $P_{\rm H}$ МПа. Температура поверхности изменяется от $t_{\rm \Pi 1}$ °C до $t_{\rm \Pi 2}$ °C. Вычислить значение коэффициента теплоотдачи для указанных температур стенки. Определить также количество образующегося конденсата, кг/(м²-ч), если скрытая теплота парообразования равна r кДж/кг.

Вариант	1	2	3	4	5	6	7	8
H	1,5	2,0	2,5	3,0	3,5	4,0	3,0	2,5
$t_{\scriptscriptstyle \mathrm{H}}$	300	305	310	305	300	295	290	285
$P_{\scriptscriptstyle \mathrm{H}}$	8,5	8,55	8,6	8,55	8,5	8,25	8,1	8,0
$t_{\Pi 1}$	260	262	265	263	261	259	257	255
$t_{\Pi 2}$	285	287	290	292	294	295	297	299
r	1400	1425	1450	1475	1470	1460	1450	1410

Задание 2

При пузырьковом режиме кипения воды к стенке подводят тепловой поток с плотностью q МВт/м². Температура насыщения воды составляет $t_{\rm H}$ °C, а скрытая теплота парообразования – r кДж/кг.

Вычислить коэффициент теплоотдачи, температуру стенки и количество образующегося пара.

Вариант	1	2	3	4	5	6	7	8
q	1,25	1,26	1,27	1,275	1,28	1,27	1,265	1,255
$t_{\scriptscriptstyle \mathrm{H}}$	300	302	304	305	306	298	296	294
r	1404	1405	1406	1407	1408	1409	1410	1405

Задание 3

Вычислить среднее значение коэффициента массоотдачи при сушке литейных стержней продуктами сгорания с температурой $t_{\rm cp}$ °C, давлением $p_{\rm cp}$ мм рт. ст. и скоростью движения w м/с. Диаметр стержня равен d мм, температура "мокрого" термометра равна $t_{\rm M}$ °C.

Вариант	1	2	3	4	5	6	7	8
$t_{ m cp}$	500	525	550	540	530	520	510	490
$p_{ m cp}$	755	757	759	761	760	758	756	754
w	3	3,2	3,4	3,6	3,8	4,0	2,9	2,8
d	120	125	130	128	126	124	122	115
$t_{ m M}$	100	102	104	106	108	110	109	107