

Негосударственное частное образовательное учреждение высшего образования «Технический университет УГМК»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Направление подготовки	22.03.02 Металлургия	
Профиль подготовки	Металлургия цветных металлов	
Уровень высшего образования	Прикладной бакалавриат	

Рассмотрено на заседании кафедры Металлургии Одобрено Методическим советом университета 30 июня 2021 г., протокол № 4

г. Верхняя Пышма 2021 Методические рекомендации к организации и выполнению самостоятельной работы составлены в соответствии с рабочей программой дисциплины «Физико-химические методы анализа».

Код направления и уровня подготовки	Название направления	Реквизиты приказа Министерства образования и науки Российской Федерации об утверждении и вводе в действие ФГОС ВО Дата Номер приказа			
22.03.02	Металлургия	04.12.2015	1427		
Автор – разработчик	Федоровых Н.В.				
Заведующий	Мастюгин Сергей				
кафедрой	Аркадьевич,				
«Металлургия»	д-р техн. наук, доц.				
Продолжительность	108 часов (3 3Е)				
модуля/дисциплины:					
Место проведения	Мобильная учебная аудитория (424), Лаборатория химических и физико- химических методов анализа (54/1)				
Цель	– расширение и углубление знаний о химических свойствах				
модуля/дисциплины:	я/дисциплины: элементов и их соединений, входящих в состав сырья, промежуточных и конечных продуктов металлургического производства; — ознакомление с теоретическими основами ряда физико-				
	химических методов анализа, с основными характеристиками и областью применения современных физико-химических методов анализа и тенденции их развития;				
	– изучение характери	істик важнейш	их спектральных,		
	электрохимических и хроматографических методов, используемых для анализа в металлургии				

Самостоятельная работа студентов включает освоение теоретического материала, подготовку к выполнению и защите лабораторных работ, и подготовку к экзамену. Настоящие методические рекомендации к организации и выполнению самостоятельной работы относятся к виду учебной работы «Изучение теоретического курса, подготовка к выполнению и защите лабораторных работ, и подготовка к экзамену». Данная составляющая самостоятельной работы предусмотрена на 3 курсе в 5 семестре в объёме 33 часов (очная форма обучения) и на 3 и 4 курсах в 6 и 7 семестрах в объёме 91 час (заочная форма обучения).

Тематика самостоятельной работы

		1 continued curve content of the processor		
Код		Время на проведение занятия,		
раздела,	Номер	Тема занятия	час	
темы			форма обучения	
		очная	заочная	
P1	1.	Общая характеристика физических и физико-	5	13
		химических методов анализа		
P2	2.	Оптические методы анализа	10	28
Р3	3.	Электрохимические методы анализа	10	26
P4	4.	Хроматографические методы анализа	8	24
		Всего:	33	91

Принятые сокращения: ОФО – очная форма обучения; ЗФО – заочная форма обучения.

Самостоятельная работа № 1

Тема: Общая характеристика физических и физико-химических методов анализа Продолжительность: 5 часов (ОФО), 13 часов (ЗФО).

Вопросы для самоконтроля при повторении теоретического материала и подготовки к защите лабораторных работ и экзамену:

- 1. Перечислите известные Вам физические и физико-химические методы анализа.
- 2. В каких случаях целесообразно использовать метод сравнения, метод калибровочного графика и метод добавок?
- 3. Что представляют собой стандартные образцы и как они используются для калибровки аналитической аппаратуры?
- 4. Принципиальная схема измерения аналитического сигнала в атомно-абсорбционном анализе
- 5. Определение концентрации веществ методом добавок. Сущность метода и его назначение. Аналитический и графический варианты.

Задания:

- 1. При кулонометрическом титровании раствора KMnOj электрохимически генерируемыми ионами Fe(Il) при постоянном напряжении первоначальный ток 150мА линейно уменьшался во времени и через 120сек. достигал нуля. Рассчитать концентрацию раствора KMnOi, если для титрования было взято 3,5мл анализируемого раствора.
- 2. При фотометрическом определении железа были получены параллельные значения массы (в мг): 0,30; 0,33; 0,27; 0,29; и 0,31. Найти по этим данным доверительный интервал среднего значения массы Fe при доверительной вероятности 0,95. Коэффициент нормированных отклонений (квантиль Стьюдента) для 5-и параллельных определений $t_{\rm p,f}$ = 2,78.
- 3. Рассчитать условный коэффициент чувствительности (коэффициент Сендела) m_s для соединения Cu_2R , имеющего молярный коэффициент поглощения $4\cdot 10^4$ л/моль см.

- 4. Каким значением молярного коэффициента поглощения ε_{λ} должно обладать фотометрируемое соединение, чтобы оптическая плотность раствора в кювете с толщиной слоя l=1см при концентрации $1 \cdot 10^4$ моль/л составила 0,3?
- 5. Коэффициент селективности α двух разделяемых компонентов A u B равен 3 ($\alpha = D_A/D_B = 3$). Приведенное время удерживания компонента A, регистрируемое графически на хроматограмме, составляет 9см. Найти приведенное время удерживания на хроматограмме компонента B.

Самостоятельная работа № 2

Тема: Оптические методы анализа

Продолжительность: 10 часов (ОФО), 28 часов (ЗФО).

Вопросы для самоконтроля при повторении теоретического материала и подготовки к защите лабораторных работ и экзамену:

- 1. Расскажите о классификации оптических методов анализа. По каким принципам можно их классифицировать?
- 2. Сформулируйте основной закон светопоглощения -закон Бугера -Ламберта Бера.
- 3. Перечислите причины отклонений от основного закона светопоглощения.
- 4. Во сколько раз изменится оптическая плотность раствора, подчиняющегося закону Бугера Ламберта -Бера, если толщину кюветы, заполненной раствором, увеличить в три раза?
- 5. Почему для измерения концентраций необходимо выбирать тот участок спектра, который отвечает максимальному значению оптической плотности?
- 6. Каковы основные требования, предъявляемые к фотометрическим реагентам?
- 7. Какие источники излучения используются в спектрофотометрии при работе в ультрафиолетовой, видимой и инфракрасной областях спектра?
- 8. Перечислите основные характеристики спектральных приборов. Нарисуйте блок-схемы молекулярно-абсорбционных, атомно-абсорбционных и эмиссионных спектрометров.
- 9. Что такое атомизатор? В каких методах анализа используются атомизаторы?
- 10. Чем отличается роль атомизатора в атомно-абсорбционном и атомно-эмиссионном методах анализа?
- 11. В чем заключается преимущество электротермического источника атомизации по сравнению с пламенным в атомно-абсорбционной спектроскопии?
- 12. Запишите уравнение Ломакина Шайбе, характеризующее зависимость интенсивности атомно-эмиссионной линии от концентрации, и объясните смысл входящих в него параметров.
- 13. Чем отличаются многоканальные спектрометры от одноканальных? Залания:
- 2. Найти концентрацию фотометрического реагента R, необходимую для связывания определяемого иона M в окрашенный комплекс MR на 99,5%. Общая концентрация иона M равна c(M).
- 3. При фотометрическом определении железа были получены параллельные значения массы (в мг): 0,30; 0,33;.0,27; 0,29; и 0,31. Вычислить относительное стандартное отклонение s_r найденной массы железа m(Fe).

 $s_r = s_m(Fe) / m(Fe)$

где $s_m(Fe)$ - стандартное отклонение; m(Fe) - среднее значение массы железа

4. Рассчитать определяемый минимум фотометрического определения Fe(III) с сульфосалициловой кислотой в аммиачной среде. Толщина поглощающего слоя 5см. Минимальный объем приготовленного окрашенного раствора составляет 25мл, минимальное значение оптической плотности, измеряемое фотоколориметром $A_{\text{мин.}} = 0.01$. Среднее значение молярного коэффициента поглощения \mathcal{E}_{4} окрашенного соединения равно $4\text{-}10^3$ л/моль-см.

5. Рассчитать массовое содержание Pb и Bi в смеси по светопоглощению водных растворов комплексонатов этих металлов при 240 и 365нм. Значения оптической плотности раствора смеси комплексонатов (Pb- \mathcal{I} и Ni- \mathcal{I} и

	ЕРЬ-ЭДТА	€ві-ЭДТА
λ=240нм	8900	2800
λ=365нм	900	9900

6. При косвенном определении вещества по тушению люминесценции вспомогательного соединения его интенсивность уменьшилась в 2 и 4 раза по сравнению с первоначальной при концентрациях определяемого вещества 0,1мкг/мл и 0,2мкг/мл, соответственно. Найти неизвестную концентрацию этого вещества в исследуемом растворе, если интенсивность люминесценции при тех же условиях уменьшилась в 2,5 раза?

Самостоятельная работа № 3

Тема: Электрохимические методы анализа

Продолжительность: 10 часов (ОФО), 26 часов (ЗФО).

Вопросы для самоконтроля при повторении теоретического материала и подготовки к защите лабораторных работ и экзамену:

- 1. Какая величина измеряется в потенциометрическом методе анализа? Приведите уравнение Нернста.
- 2. Какие требования предъявляются к индикаторному электроду и электроду сравнения?
- 3. Каковы общие свойства мембран, используемых для изготовления ионоселективных электродов?
- 4. Как оценивается коэффициент селективности ионоселективного электрода?
- 5. Перечислите основные источники погрешностей и причины их возникновения при измерении рН стеклянным электродом.
- 6. Что представляет собой ячейка в вольтамперометрии?
- 7. Опишите сущность полярографического метода. Что такое остаточный, предельный, миграционный ток?
- 8. При каких условиях предельный ток является диффузионным?
- 9. На чем основан количественный полярографический анализ?
- 10. Как экспериментально находят потенциал полуволны на полярографической кривой? Для чего его используют?
- 11. Почему в кулонометрических методиках добиваются 100% -ного выхода по току?
- 12. Сформулируйте законы Фарадея.
- 13. Сформулируйте сущность амперометрического способа титрования.
- 14. Нарисуйте типичные кривые амперометрического титрования.
- 15. Назовите области применения, достоинства и недостатки амперометрического титрования. Задания:
- 1. При прямом кулонометрическом определении меди на медном кулонометре было выделено 3,293г меди. Определить какое количество электричества было затрачено на выделение этой массы меди из раствора медного купороса?
- 2. При полярографическом определении методом добавок значения предельного диффузионного тока для исследуемого раствора и того же раствора с добавкой составили 1,05 и 1,25мкА, соответственно. Определить концентрацию исследуемого раствора, если концентрация добавки в растворе равна 2мг/мл.

- 3. При кулонометрическом амперостатическом титровании раствора $K_2Cr_2O_7$ электрохимически генерируемым Fe(II), на восстановление ионов Cr_2O_7 ²⁻ понадобилось 25минут при силе тока 200мА. Определить массовое содержание $K_2Cr_2O_7$ в растворе.
- 4. Значения предельного диффузионного тока исследуемого раствора и раствора сравнения при одинаковых условиях полярографирования составили, соответственно 1,0 и 1,2мкА. Концентрация раствора сравнения 1,2мг/мл. Чему равна концентрация исследуемого раствора, если объемы растворов одинаковые?
- 5. При потенциометрическом титровании раствора Na₂CO₃ эквивалентный объем 0,01M раствора HC1 составил 5мл. Определить массовое содержание Na₂CO₃ в титруемом растворе.

Самостоятельная работа № 4

Тема: Хроматографические методы анализа

Продолжительность: 8 часов (ОФО), 24 часа (ЗФО).

Вопросы для самоконтроля при повторении теоретического материала и подготовки к защите лабораторных работ и экзамену:

- 1. Как можно классифицировать основные хроматографические методы анализа?
- 2. По каким хроматографическим параметрам производится идентификация компонентов анализируемой смеси?
- 3. Каковы возможности и ограничения разных количественных хроматографических методов?
- 4. Перечислите основные узлы газового хроматографа.
- 5. Назовите основные типы детекторов и объясните принцип их действия.
- 6. Охарактеризуйте особенности ГАХ и ГЖХ, области их применения.
- 7. Опишите процесс хроматографического разделения на ионитах. Какие ионообменные процессы протекают в процессе ионообменного разделения?

Задания:

- 1. Графическое (на хроматограмме) время удерживания компонентов составило, соответственно, 3, 5, и 8см. Высота всех пиков на хроматограмме одинаковая. Найти относительное содержание каждого из компонентов смеси.
- 2. При разделении 2-х компонентов приведенное время удерживания на хроматограмме первого компонента составило 5см. Коэффициенты распределения для первого и второго компонентов равны, соответственно 20 и 30. Найти приведенное время удерживания второго компонента.
- 3. При количественном определении в газовой хроматографии были использованы внешние стандарты, содержащие 3мг/л и 7мг/л определяемого вещества, площадь пиков которых на хроматограмме составила, соответственно, 9 и 22см. Определить концентрацию этого вещества в анализируемой пробе, если при том же объеме введения пробы в испаритель хроматографа площадь пика составила 18cm^2 .
- 4. Приведенное время удерживания стандартных веществ *А*, *В*, и С на хроматограмме составляет, соответственно, 6, 12 и 18см. При анализе пробы время выхода индифферентного компонента на хроматограмме составило 6см, а компонента пробы 18см. Какой компонент содержится в пробе?
- 5. Время выхода компонентов, регистрируемое на хроматограмме составляет, соответственно,
- 3, 6, и 10см. Высоты пиков первых 2-х компонентов одинаковы и в 2 раза больше, чем третьего. Найти относительное содержание компонентов в анализируемой смеси.